

±0.5°C Accurate Digital Temperature Sensor and Quad Voltage Output 12/10/8-Bit DAC

Preliminary Technical Data

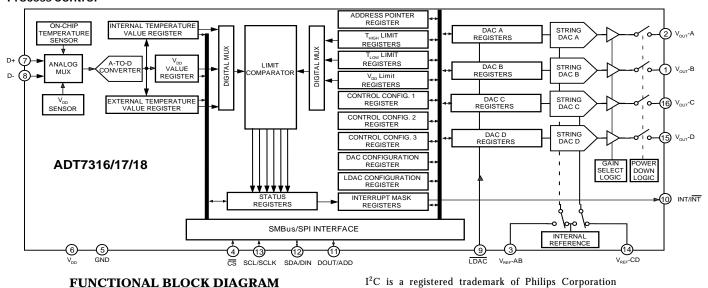
FEATURES

ADT7316 - Four 12-Bit DACs ADT7317 - Four 10-Bit DACs ADT7318 - Four 8-Bit DACs Buffered Voltage Output Guaranteed Monotonic By Design Over All Codes 10-Bit Temperature to Digital Converter Temperature range: -40°C to +125°C Temperature Sensor Accuracy of ±0.5°C Supply Range : + 2.7 V to + 5.5 V

DAC Output Range: 0 - 2V_{REF} Power-Down Current 1µA Internal 2.25 V_{Ref} Option Double-Buffered Input Logic Buffered / Unbuffered Reference Input Option Power-on Reset to Zero Volts Simultaneous Update of Outputs (LDAC Function) On-Chip Rail-to-Rail Output Buffer Amplifier

I²C[●], SPI[™], QSPI[™], MICROWIRE[™] and DSP-Compatible 4wire Serial Interface 16-Lead QSOP Package

APPLICATIONS Portable Battery Powered Instruments Personal Computers Telecommunications Systems Electronic Test Equipment Domestic Appliances Process Control


GENERAL DESCRIPTION

The ADT7316/7317/7318 combines a 10-Bit Temperature-to-Digital Converter and a quad 12/10/8-Bit DAC respectively, in a 16-Lead QSOP package. This includes a bandgap temperature sensor and a 10-bit ADC to monitor and digitize the temperature reading to a resolution of 0.25°C. The ADT7316/17/18 operates from a single +2.7V to +5.5V supply. The output voltage of the DAC ranges from 0 V to $2V_{REF}$, with an output voltage settling time of typ 7 msec. The ADT7316/17/18 provides two serial interface options, a four-wire serial interface which is compatible with SPITM, QSPITM, MICROWIRETM and DSP interface standards; and a two-wire SMBus/I²C interface. It features a standby mode that is controlled via the serial interface.

ADT7316/7317/7318

The reference for the four DACs is derived either internally or from two reference pins (one per DAC pair) .The outputs of all DACs may be updated simultaneously using the software LDAC function or external LDAC pin. The ADT7316/7317/7318 incorporates a power-on-reset circuit, which ensures that the DAC output powers-up to zero volts and it remains there until a valid write takes place.

The ADT7316/7317/7318's wide supply voltage range, low supply current and SPI/I²C-compatible interface, make it ideal for a variety of applications, including personal computers, office equipment and domestic appliances.

REV. PrP 01/'03

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

I²C is a registered trademark of Philips Corporation SPI and QSPI are trademarks of Motorola, INC. MICROWIRE is a trademark of National Semiconductor Corporation. The ADT7316/7317/7318 is protected by the following U.S. patent numbers and by other intellectual property rights : 6,169,442 6,097,239 US Patent Pending 5,867,012 5,764174 One Technology Way, PO. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703

www.analog.com Analog Devices, Inc., 2003

$\begin{array}{l} \textbf{ADT7316/ADT7317/ADT7318-SPECIFICATIONS}^1 \\ (V_{DD}=2.7 \ V \ to \ 5.5 \ V, \ GND=0 \ V, \ REF_{IN}=2.25 \ V, \ unless \ otherwise \ noted) \end{array}$

Parameter ²	Min	Тур	Max	Units	Conditions/Comments
DAC DC PERFORMANCE ^{3,4}					
ADT7318					
Resolution		8		Bits	
Relative Accuracy		± 0.15	±1	LSB	
Relative Accuracy		tbd	tbd	LSB	Excluding Offset and Gain errors
Differential Nonlinearity		± 0.02	± 0.25	LSB	Guaranteed Monotonic by design over all codes
ADT7317		10		Dite	
Resolution		10	. 4	Bits	
Relative Accuracy		± 0.5	±4	LSB LSB	Evaluding Officiat and Cain among
Relative Accuracy Differential Nonlinearity		tbd ±0.05	tbd ±0.5	LSB	Excluding Offset and Gain errors Guaranteed Monotonic by design over all codes
ADT7316		± 0.03	± 0.5	LOD	Guaranteed Wohotonic by design over an codes
Resolution		12		Bits	
Relative Accuracy		± 2	± 16	LSB	
Relative Accuracy		tbd	tbd	LSB	Excluding Offset and Gain errors
Differential Nonlinearity		± 0.02	± 0.9	LSB	Guaranteed Monotonic by design over all codes
Offset Error		± 0.02 ± 0.4	± 3	% of FSR	Cuaranteed Wonotonie by design over an codes
Offset Error Match		±0.1	± 0.5	LSB	
Gain Error		± 0.3	± 1.25	% of FSR	
Gain Error Match		-0.0	± 0.5	LSB	
Lower Deadband		20	60	mV	Lower Deadband exists only if Offset Error is
Lower Doudband		20	00		Negative. See Figure 5.
Upper Deadband		tbd	tbd	mV	Upper Deadband exists if $V_{REF} = V_{DD}$ and Offset
					plus Gain Error is positive. See Figure 6.
Offset Error Drift ⁵		-12		ppm of FSR/°C	
Gain Error Drift ⁵		- 5		ppm of FSR/°C	
DC Power Supply Rejection Ratio ⁵		-60		dB	$\Delta V_{DD} = \pm 10\%.$
DC Crosstalk ⁵		200		μV	Reference Figure 4.
THERMAL CHARACTERISTICS					Internal Reference used. Averaging on.
INTERNAL TEMPERATURE SENSOR					
Accuracy @ V_{DD} = 3.3V ±10%			± 0.5	°C	$T_A = 40^{\circ}C$
		± 0.5	± 2	°C	$T_A = 40 \text{ C}$ $T_A = 0^{\circ}\text{C}$ to +85°C
		±2	= = ± 3	°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$
Accuracy @ V_{DD} = 5V ±5%			±1	°C	$T_A = 40^{\circ}C$
		± 2	± 3	°C	$T_A = 0^{\circ}C$ to $+85^{\circ}C$
		± 3	± 4	°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$
Resolution			10	Bits	Equivalent to 0.25°C
Long Term Drift		0.5		°C/1000hrs	
Conversion Time		25.92		m s	Averaging (16 samples) on.
		1.62		ms	Averaging off.
EXTERNAL TEMPERATURE					
SENSOR					External Transistor = 2N3906.
Accuracy @ V_{DD} = 3.3V ±10%			± 1	°C	$T_A = 40^{\circ}C.$
			± 2	°C	$T_A = 0^{\circ}C$ to +85°C.
			± 3	°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$
Accuracy @ V_{DD} = 5V ±5%			±1.5	°C	$T_A = 40^{\circ}C.$
5 <u>22</u>		± 2	± 3	°C	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$
		± 3	± 4	°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$
Resolution			10	Bits	Equivalent to 0.25°C
Conversion Time		16.8		ms	Averaging (16 samples) on.
		1.05		m s	Averaging off.
				μA	High Level
Output Source Current		180		μ	
		180 11		μΑ	Low Level
Output Source Current				•	
				•	

ADT7316/7317/7318

Parameter ²	Min	Тур	Max	Units	Conditions/Comments
Resolution Scale Factor	1	8.79 17.58		°C mV/°C mV/°C	0-V _{REF} Output. $T_A = -40^{\circ}C$ to $+125^{\circ}C$ 0-2V _{REF} Output. $T_A = -40^{\circ}C$ to $+125^{\circ}C$
10-Bit DAC Output Resolution Scale Factor	0.25	2.2 4.39		°C mV/°C mV/°C	0-V _{REF} Output. $T_A = -40^{\circ}C$ to $+125^{\circ}C$ 0-2V _{REF} Output. $T_A = -40^{\circ}C$ to $+125^{\circ}C$
ROUND ROBIN UPDATE RATE ⁶ Averaging On Averaging Off		43.43 2.715		ms ms	Time to complete one measurement cycle.
DAC EXTERNAL REFERENCE INPUT ⁷ V_{REF} Input Range V_{REF} Input Range V_{REF} Input Impedance Reference Feedthrough Channel-to-Channel Isolation	1 0.25 37 74	45 90 >10 -90 -75	$\begin{array}{c} V_{DD} \\ V_{DD} \end{array}$	V V kΩ MΩ dB dB dB	Buffered Reference Mode Unbuffered Reference Mode Unbuffered Reference Mode. 0-2 V_{REF} Output Range. Unbuffered Reference Mode. 0- V_{REF} Output Range. Buffered reference mode and Power-Down Mode Frequency=10KHz Frequency=10KHz
ON-CHIP REFERENCE Reference Voltage ⁷ Temperature Coefficient ⁷		2.25 80		V ppm/°C	
OUTPUT CHARACTERISTICS ⁷ Output Voltage ⁸	0.001		V_{DD} -0.001	v	This is a measure of the minimum and maximum drive capability of the output amplifier
DC Output Impedance Short Circuit Current Power Up Time		$0.5 \\ 25 \\ 16 \\ 2.5$		Ω mA mA µs	$V_{DD} = +5V$ $V_{DD} = +3V$ Coming out of Power Down Mode. $V_{DD} = +5V$
		5		μs	Coming out of Power Down Mode. $V_{DD} = +3.3 V$
DIGITAL INPUTS ⁷ Input Current V _{IL} , Input Low Voltage V _{IH} , Input High Voltage Pin Capacitance SCL, SDA Glitch Rejection	1.89	3	±1 0.8 10 50	μA V V pF ns	$V_{\rm IN}$ = 0V to $V_{\rm DD}$ All Digital Inputs Input Filtering Suppresses Noise Spikes of Less than 50 ns
LDAC Pulse Width	20			ns	
$\begin{array}{c} \text{DIGITAL OUTPUT} \\ \text{Output High Voltage, } V_{\text{OH}} \\ \text{Output Low Voltage, } V_{\text{OL}} \\ \text{Output High Current, } I_{\text{OH}} \\ \textbf{Output Capacitance, } C_{\text{OUT}} \\ \text{ALERT Output Saturation Voltage} \end{array}$	2.4		0.4 1 50 0.8	V V m A p F V	$I_{SOURCE} = I_{SINK} = 200 \ \mu A$ $I_{OL} = 3 \ m A$ $V_{OH} = 5 \ V$ $I_{OUT} = 4 \ m A$
I ² C TIMING CHARACTERISTICS ^{9,10} Serial Clock Period, t_1 Data In Setup Time to SCL High, t_2	2.5			μs	Fast-Mode I ² C. See Figure 1
Data Out Stable after SCL Low, t_3 SDA Low Setup Time to SCL Low (Start Condition), t_4	0 50			ns ns	See Figure 1 See Figure 1
SDA High Hold Time after SCL High (Stop Condition), t ₅ SDA and SCL Fall Time, t ₆	1		90	ns	See Figure 1 See Figure 1 See Figure 1
SPI TIMING CHARACTERISTICS ^{11, 12} \overline{CS} to SCLK Setup Time, t ₁ SCLK High Pulsewidth, t ₂ SCLK Low Pulse, t ₃ Data Access Time after	0 50 50		0.5	ns ns ns	See Figure 2 See Figure 2 See Figure 2
SCLK Falling edge, t_4^{13} Data Setup Time Prior to SCLK Rising Edge, t_5	20		35	ns ns	See Figure 2 See Figure 2

Data Hold Time after SCLK Rising Edge, t_6 \overline{CS} to SCLK Hold Time, t_7 \overline{CS} to DOUT High Impedance, t_8	0 0		40	ns ns ns	See Figure 2 See Figure 2 See Figure 2
POWER REQUIREMENTS					
V _{DD}	2.7		5.5	V	
V _{DD} Settling Time			50	ms	$V_{ m DD}$ settles to within 10% of it's final voltage
					level.
I _{DD} (Normal Mode) ¹⁴			2	mA	V_{DD} = +3.3V, V_{IH} = V_{DD} and V_{IL} = GND
			2.2	mA	$V_{DD} = +5V$, $V_{IH} = V_{DD}$ and $V_{IL} = GND$
I _{DD} (Power Down Mode)		tbd	3	μA	V_{DD} = +3.3V, V_{IH} = V_{DD} and V_{IL} = GND
		tbd	10	μA	$V_{DD} = +5V$, $V_{IH} = V_{DD}$ and $V_{IL} = GND$
Power Dissipation		tbd	6.6	mW	V_{DD} = +3.3 V. Using Normal Mode.
-		tbd	10	μW	V_{DD} = +3.3 V. Using Shutdown Mode.

Notes:

Temperature ranges are as follows: A Version: -40°C to +125°C.

See Terminology.

DC specifications tested with the outputs unloaded.

4 Linearity is tested using a reduced code range: ADT7316 (code 115 to 4095); ADT7317 (code 28 to 1023); ADT7318 (code 8 to 255) See Terminology. 5

6 Round Robin is the continuous sequential measurement of the following three channels : VDD, Internal Temperature and External Temperature.

Guaranteed by Design and Characterization, not production tested

In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, $\dot{V}_{REF}=V_{DD}$, "Offset plus Gain" Error must be positive.

⁹ The SDA & SCL timing is measured with the input filters turned on so as to meet the Fast-Mode I²C specification. Switching off the input filters improves the transfer rate but has a negative affect on the EMC behaviour of the part.

10 Guaranteed by design. Not tested in production.

¹¹ Guaranteed by design and characterization, not production tested. ¹² All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6 V.

¹³ Measured with the load circuit of Figure 3.

¹⁴ I_{DD} spec. is valid for all DAC codes. Interface inactive. All DACs active. Load currents excluded.

Specifications subject to change without notice.

		4K7Ω	to V _{DD} ; A	ll specificat	ons T_{MIN} to T_{MAX} unless otherwise noted.)	
Parameter ²	Min	Typ @ 25°C	Max	Units	Conditions/Comments	
Output Voltage Settling Time ADT7318 ADT7317 ADT7316 Slew Rate Major-Code Change Glitch Energy Digital Feedthrough Digital Crosstalk Analog Crosstalk DAC-to-DAC Crosstalk Multiplying Bandwidth Total Harmonic Distortion		6 7 8 0.7 12 0.5 1 0.5 3 200 -70	8 9 10	μs μs V/μs nV-s nV-s nV-s nV-s nV-s kHz d B	$V_{REF}=V_{DD}=+5V$ 1/4 Scale to 3/4 Scale change (40 Hex to C0 Hex) 1/4 Scale to 3/4 Scale change (100 Hex to 300 Hex) 1/4 Scale to 3/4 Scale change (400 Hex to C00 Hex) 1 LSB change around major carry. $V_{REF}=2V\pm0.1Vpp$ $V_{REF}=2.5V\pm0.1Vpp. Frequency=10kHz.$	

 $(V_{DD} = +2.7V \text{ to } +5.5 \text{ V}; R_L = 4k7\Omega \text{ to GND}; C_L = 200 \text{pF to GND};$

DAC AC CHARACTERISTICS¹

NOTES

¹Guaranteed by Design and Characterization, not production tested

²See Terminology

Specifications subject to change without notice.

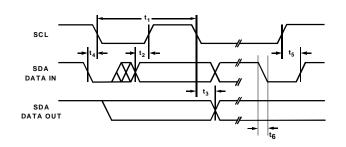


Figure 1. Diagram for I²C Bus Timing

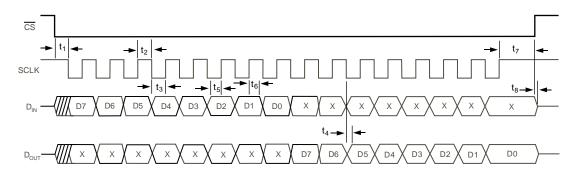


Figure 2. Diagram for SPI Bus Timing

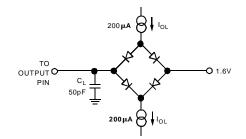


Figure 3. Load Circuit for Access Time and Bus Relinquish Time

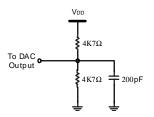
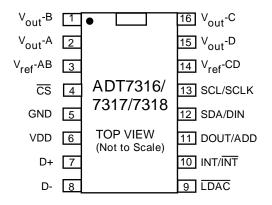


Figure 4. Load Circuit for DAC Outputs

ADT7316/7317/7318


ABSOLUTE MAXIMUM RATINGS¹

V _{DD} to GND	-0.3 V to +7 V
Digital Input Voltage to GND	-0.3 V to V _{DD} + 0.3 V
Digital Output Voltage to GND	-0.3 V to V _{DD} + 0.3 V
Reference Input voltage to GND	-0.3 V to V _{DD} + 0.3V
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
16-Lead QSOP Package	
Power Dissipation ²	$(T_i max - T_A) / \theta_{JA}$
Thermal Impedance ³	5
θ _{JA} Junction-to-Ambient	105.44 °C/W
θ_{JC} Junction-to-Case	38.8 °C/W
IR Reflow Soldering	
Peak Temperature	+220°C (-0/+5°C)
Time at Peak Temperature	10 to 20 secs
Ramp-up Rate	2-3°C/sec
Ramp-down Rate	-6°C/sec
-	

Table 1. I²C Address Selection

I ² C Address		
1001 000		
1001 010		
1001 011		

PIN CONFIGURATION QSOP

Notes:

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Values relate to package being used on a 4-layer board.

³Junction-to-Case resistance is applicable to components featuring a preferential flow direction, eg. components mounted on a heat sink. Junction-to-Ambient resistance is more useful for air-cooled PCB-mounted components.

ORDERING GUIDE

Model	Temperature Range	DAC Resolution	Package Description	Package Options
ADT7318ARQ	-40°C to +125°C	8-Bits	16-Lead QSOP	RQ-16
ADT7317ARQ	-40°C to +125°C	10-Bits	16-Lead QSOP	RQ-16
ADT7316ARQ	-40°C to +125°C	12-Bits	16-Lead QSOP	RQ-16

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADT7316/7317/7318 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADT7316/7317/7318

ADT7316/7317/7318 PIN FUNCTION DESCRIPTION

Pin	Mnemonic	Description
1	V _{OUT} B	Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
2	V _{OUT} A	Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
3	V _{REF} AB	Reference Input Pin for DACs A and B. It may be configured as a buffered or unbuffered input to both DACs A and B. It has an input range from 0.25 V to V_{DD} in unbuffered mode and from 1 V to V_{DD} in buffered mode. DACs A and B default on power-up to this pin.
4	ΣS	SPI - Active low control Input. This is the frame synchronization signal for the input data. When \overline{CS} goes low, it enables the input register and data is transferred in on the rising edges and out on the falling edges of the subsequent serial clocks. It is recommended that this pin be tied high to V_{DD} when operating the serial interface in I ² C mode.
5	GND	Ground Reference Point for all circuitry on the part. Analog and Digital Ground.
6	V _{DD}	Positive Supply Voltage, +2.7 V to +5.5 V. The supply should be decoupled to ground.
7	D +	Positive connection to external temperature sensor
8	D -	Negative connection to external temperature sensor
9	LDAC	Active low control input that transfers the contents of the input registers to their respective DAC registers. A falling edge on this pin forces any or all DAC registers to be updated if the input registers have new data. A minimum pulse width of 20ns must be applied to the LDAC pin to ensure proper loading of a DAC register. This allows simultaneous update of all DAC outputs. Bit C3 of Control Configuration 3 register enables LDAC pin. Default is with LDAC pin controlling the loading of DAC registers.
10	INT/ĪNT	Over Limit Interrupt. The output polarity of this pin can be set to give an active low or active high interrupt when temperature or V_{DD} limits are exceeded. Default is active low.
11	DOUT/ADD	$\begin{array}{llllllllllllllllllllllllllllllllllll$
12	SDA/DIN	 SDA - I²C Serial Data Input. I²C serial data that is loaded into the device's registers is provided on this input. DIN - SPI Serial Data Input. Serial data to be loaded into the device's registers is provided on this input. Data is clocked into a register on the rising edge of SCLK.
13	SCL/SCLK	Serial Clock Input. This is the clock input for the serial port. The serial clock is used to clock data out of any register of the ADT7316/7317/7318 and also to clock data into any register that can be written to.
14	V _{REF} CD	Reference Input Pin for DACs C and D. It may be configured as a buffered or unbuffered input to both DACs C and D. It has an input range from 0.25 V to $V_{\rm DD}$ in unbuffered mode and from 1 V to $V_{\rm DD}$ in buffered mode. DACs C and D default on power-up to this pin.
15	V _{OUT} D	Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
16	V _{OUT} C	Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.

TERMINOLOGY RELATIVE ACCURACY

Relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. Typical INL versus Code plots can be seen in TPCs 1, 2 and 3.

DIFFERENTIAL NONLINEARITY

Differential Nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC and Temperature Sensor ADC is guaranteed monotonic by design. Typical DAC DNL versus Code plots can be seen in TPCs 4, 5 and 6.

OFFSET ERROR

This is a measure of the offset error of the DAC and the output amplifier. (See Figures 5 and 6.) It can be negative or positive. It is expressed as a percentage of the full scale range.

OFFSET ERROR MATCH

This is the difference in Offset Error between any two channels.

GAIN ERROR

This is a measure of the span error of the DAC. It is the deviation in slope of the actual DAC transfer characteristic from the ideal expressed as a percentage of the full-scale range.

GAIN ERROR MATCH

This is the difference in Gain Error between any two channels.

OFFSET ERROR DRIFT

This is a measure of the change in offset error with changes in temperature. It is expressed in (ppm of full-scale range)/ $^{\circ}$ C.

GAIN ERROR DRIFT

This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of full-scale range)/ $^{\circ}$ C.

LONG TERM TEMPERATURE DRIFT

This is a measure of the change in temperature error with the passage of time. It is expressed in °C/1000hrs. The concept of long-term stability has been used for many years to describe by what amount an IC's parameter would shift during its lifetime. This is a concept that has been typically applied to both voltage references and monolithic temperature sensors. Unfortunately, integrated circuits cannot be evaluated at room temperature (25°C) for 10 years or so to determine this shift. As a result, manufacturers very typically perform accelerated life-time testing of integrated circuits by operating ICs at elevated temperatures (between 125°C and 150°C) over a shorter period of time (typically, between 500 and 1000 hours). As a result of this operation, the lifetime of an integrated circuit is significantly accelerated due to the increase in rates of reaction within the semiconductor material. As a result of this operation, the lifetime of an integrated circuit is significantly accelerated due to the increase in rates of reaction within the semiconductor material.

DC POWER-SUPPLY REJECTION RATIO (PSRR)

This indicates how the output of the DAC is affected by changes in the supply voltage. PSRR is the ratio of the change in V_{OUT} to a change in V_{DD} for full-scale output of the DAC. It is measured in dBs. V_{REF} is held at 2 V and V_{DD} is varied $\pm 10\%$.

DC CROSSTALK

This is the dc change in the output level of one DAC in response to a change in the output of another DAC. It is measured with a full-scale output change on one DAC while monitoring another DAC. It is expressed in μV .

REFERENCE FEEDTHROUGH

This is the ratio of the amplitude of the signal at the DAC output to the reference input when the DAC output is not being updated (i.e., \overline{LDAC} is high). It is expressed in dBs.

CHANNEL-TO-CHANNEL ISOLATION

This is the ratio of the amplitude of the signal at the output of one DAC to a sine wave on the reference input of another DAC. It is measured in dBs.

MAJOR-CODE TRANSITION GLITCH ENERGY

Major-code transition glitch energy is the energy of the impulse injected into the analog output when the code in the DAC register changes state. It is normally specified as the area of the glitch in nV secs and is measured when the digital code is changed by 1 LSB at the major carry transition $(011 \ldots 11 \text{ to } 100 \ldots 00 \text{ or } 100 \ldots 00 \text{ to } 011 \ldots 11)$.

DIGITAL FEEDTHROUGH

Digital feedthrough is a measure of the impulse injected into the analog output of a DAC from the digital input pins of the device but is measured when the DAC is not being written to. It is specified in nV secs and is measured with a full-scale change on the digital input pins, i.e., from all 0s to all 1s or vice versa.

DIGITAL CROSSTALK

This is the glitch impulse transferred to the output of one DAC at midscale in response to a full-scale code change (all 0s to all 1s and vice versa) in the input register of another DAC. It is measured in stand-alone mode and is expressed in nV secs.

ANALOG CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a change in the output of another DAC. It is measured by loading one of the input registers with a full-scale code change (all 0s to all 1s and vice versa) while keeping $\overline{\text{LDAC}}$ high. Then pulse $\overline{\text{LDAC}}$ low and moni-

tor the output of the DAC whose digital code was not changed. The area of the glitch is expressed in nV secs.

DAC-TO-DAC CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a digital code change and subsequent output change of another DAC. This includes both digital and analog crosstalk. It is measured by loading one of the DACs with a full-scale code change (all 0s to all 1s and vice versa) with $\overline{\text{LDAC}}$ low and monitoring the output of another DAC. The energy of the glitch is expressed in nV secs.

MULTIPLYING BANDWIDTH

The amplifiers within the DAC have a finite bandwidth. The multiplying bandwidth is a measure of this. A sine wave on the reference (with full-scale code loaded to the DAC) appears on the output. The multiplying bandwidth is the frequency at which the output amplitude falls to 3 dB below the input.

TOTAL HARMONIC DISTORTION

This is the difference between an ideal sine wave and its attenuated version using the DAC. The sine wave is used as the reference for the DAC, and the THD is a measure of the harmonics present on the DAC output. It is measured in dBs.

ROUND ROBIN

This term is used to describe the ADT7316/17/18 cycling through the available measurement channels in sequence, taking a measurement on each channel.

DAC OUTPUT SETTLING TIME

This is the time required, following a prescribed data change, for the output of a DAC to reach and remain within ± 0.5 LSB of the final value. A typical prescribed change is from 1/4 scale to 3/4 scale.

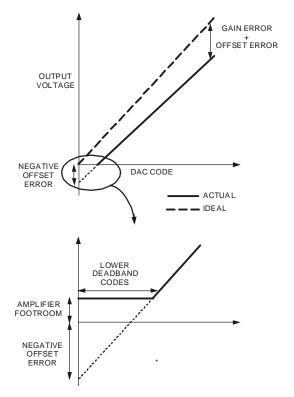


Figure 5. Transfer Function with Negative Offset

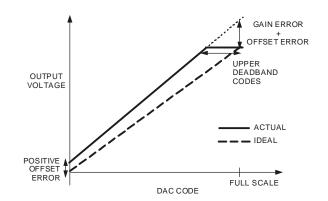
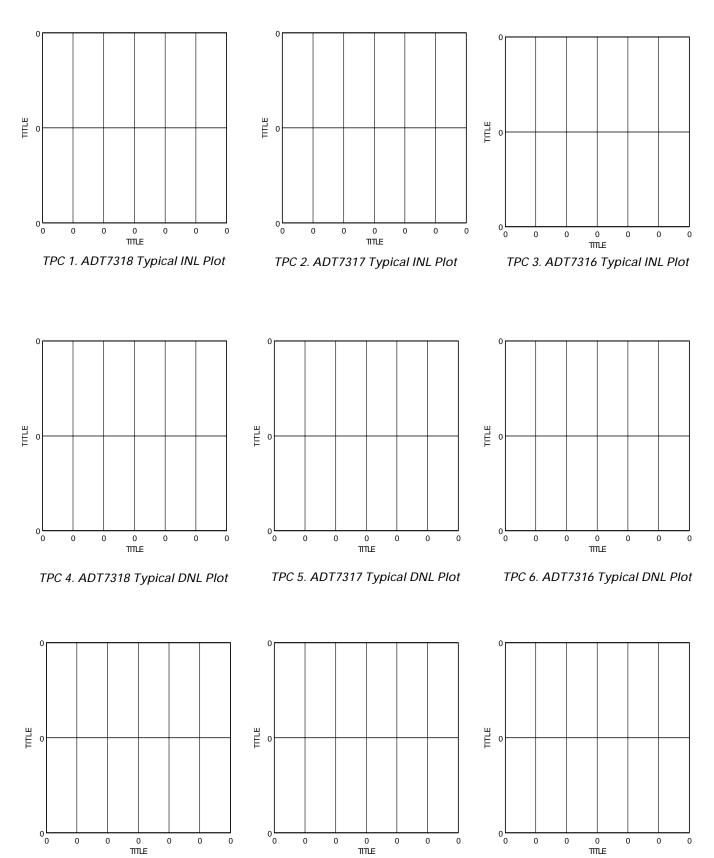
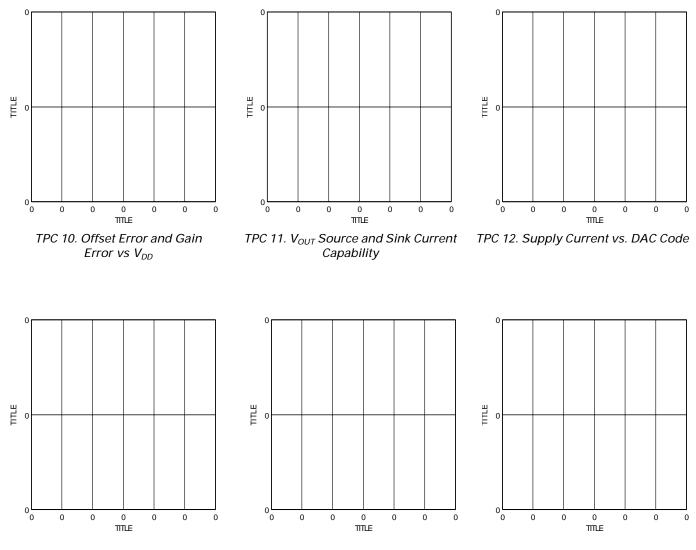
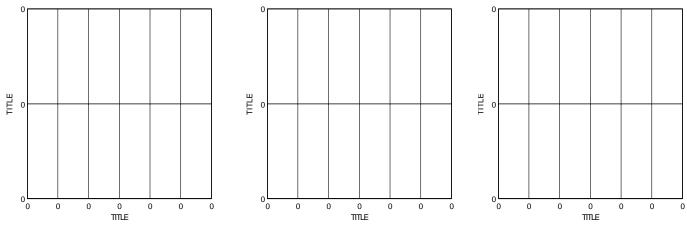



Figure 6. Transfer Function with Positive Offset ($V_{REF} = V_{DD}$)

ADT7316/7317/7318

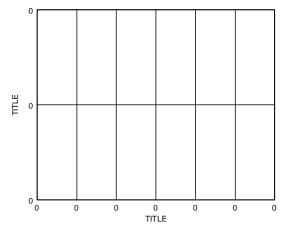


TPC 7. ADT7318 INL and DNL Error vs V_{REF}

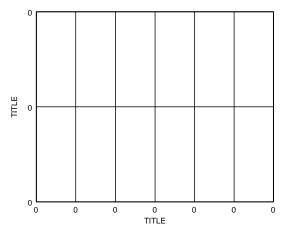

TPC 8. ADT7318 INL Error and DNL Error vs Temperature

TPC 9. ADT7318 Offset Error and Gain Error vs Temperature

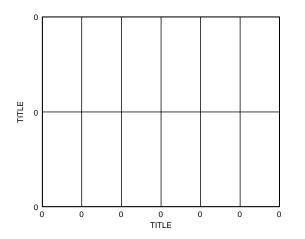
-10-

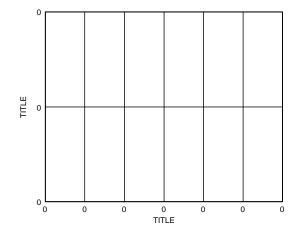


TPC 13. Supply Current vs. Supply Volt-TPC 14. Power-Down Current vs. SupplyTPC 15. Half-Scale Settling (1/4 to 3/4ageVoltageScale Code Change)



TPC 16. Exiting Power-Down to Midscale TPC 17. ADT7316 Major-Code Transition TPC 18. Multiplying Bandwidth (Small-Glitch Energy Signal Frequency Response)


ADT7316/7317/7318



TPC 20. DAC-to-DAC Crosstalk

TPC 21. PSRR vs Supply Ripple Frequency

TPC 22. Temperature Error @ 3.3 V and 5 V

ADT7316/17/18 OPERATION

Directly after the power-up calibration routine the ADT7316/17/18 goes into idle mode. In this mode the device is not performing any measurements and is fully powered up. All four DAC outputs are at 0V.

To begin monitoring, write to Control Configuration 1 (address = 18h) register and set bit C0 = 1. The ADT7316/17/18 goes into it's power-up default measurement mode, which is Round Robin. The device proceeds to take measurements on the V_{DD} channel, the internal temperature sensor channel and the external temperature sensor channel. Once it finishes taking measurements on the external temperature sensor channel the device immediately loops back to start taking measurements on the V_{DD} channel and repeats the same cycle as before. This loop continues until the monitoring is stopped by resetting bit C0 of Control Configuration 1 register to 0. It is also possible to continue monitoring as well as switching to Single channel mode by writing to Control Configuration 2 register (address = 19h) and setting bit C4 = 1. Further explanation of the Single channel and Round Robin measurement modes are given in later sections. All measurement channels have averaging enabled on them on power-up. Averaging forces the device to take an average of 16 readings before giving a final measured result. To disable averaging and consequently decrease the conversion time by a factor of 16, set C5 = 1 in Control Configuration 2 register.

Controlling the DAC outputs can be done by writing to the DACs MSB and LSB registers (addresses 10h - 17h). The power-up default setting is to have a low going pulse on the $\overline{\text{LDAC}}$ pin controlling the updating of the DAC outputs from the DAC registers. You can configure the updating of the DAC outputs to be controlled by methods other than the LDAC pin by setting C3 = 1 of the Control Configuration 3 register (address = 1Ah). The DAC Configuration register (address = 1Bh) and the LDAC Configuration register (address = 1Ch) can now be used to control the DAC updating. These two registers also control the output range of the DACs, enabling or disabling the external reference buffer and selecting between the internal or external reference. DAC A and DAC B outputs can be configured to give a voltage output proportional to the temperature of the internal and external temperature sensors respectively.

The dual serial interface defaults to the I^2C protocol on power-up. To select and lock in the SPI protocol please follow the selection process as described in the Serial Interface Selection section. The I^2C protocol cannot be locked in, while the SPI protocol in selection is automatically locked in. The interface can only be switched back to be I^2C when the device is powered off and on. When using I^2C the \overline{CS} pin should be tied to either V_{DD} or GND.

There are a number of different operating modes on the ADT7316/17/18 devices and all of them can be controlled by the configuration registers. These features consist of the INT/INT pin, enabling and disabling interrupts, polarity of the INT/INT pin, enabling and disabling the averaging on the measurement channels, SMBus timeout and software reset.

ADT7316/7317/7318

POWER-UP CALIBRATION

It is recommended that no communication to the part is initiated until approximately 5ms after $V_{\rm DD}$ has settled to within 10% of it's final value. It is generally accepted that most systems take a maximum of 50ms to power-up. Power-up time is directly related to the amount of decoupling on the voltage supply line.

During this 5ms after $V_{\rm DD}$ has settled, the part is performing a calibration routine and any communication to the device will interrupt this routine and could cause erroneous temperature measurements. If it not possible to have $V_{\rm DD}$ at it's nominal value by the time 50ms has elapsed or that communication to the device has started prior to $V_{\rm DD}$ settling then it is recommended that a measurement be taken on the $V_{\rm DD}$ channel before a temperature measurement is taken. The $V_{\rm DD}$ measurement is used to calibrate out any temperature measurement error due to different supply voltage values.

FUNCTIONAL DESCRIPTION - VOLTAGE OUTPUT DAC

The ADT7316/7317/7318 has four resistor-string DACs fabricated on a CMOS process with resolutions of 12, 10 and 8 bits respectively. They contain four output buffer amplifiers and is written to via an I^2C serial interface or an SPI serial interface. See Serial Interface Selection section for more information.

The ADT7316/7317/7318 operates from a single supply of 2.7 V to 5.5 V and the output buffer amplifiers provide rail-to-rail output swing with a slew rate of 0.7 V/ μ s. DACs A and B share a common external reference input, namely V_{REF}AB. DACs C and D share a common external reference input, namely V_{REF}CD. Each reference input may be buffered to draw virtually no current from the reference source, or unbuffered to give a reference input range from GND to V_{DD}. The devices have a power-down mode, in which all DACs may be turned off completely with a high-impedance output.

Each DAC output will not be updated until it receives the LDAC command. Therefore while the DAC registers would have been written to with a new value, this value will not be represented by a voltage output until the DACs have received the LDAC command. Reading back from any DAC register prior to issuing an LDAC command will result in the digital value that corresponds to the DAC output voltage. Thus the digital value written to the DAC register cannot be read back until after the LDAC command has been initiated. This LDAC command can be given by either pulling the $\overline{\text{LDAC}}$ pin low (falling edge loads DACs), setting up Bits D4 and D5 of DAC Configuration register (Address = 1Bh) or using the LDAC register (Address = 1Ch).

When using the $\overline{\text{LDAC}}$ pin to control DAC register loading, the low going pulse width should be 20ns minimum. The $\overline{\text{LDAC}}$ pin has to go high and low again before the DAC registers can be reloaded.

Digital-to-Analog Section

The architecture of a DAC channel consists of a resistorstring DAC followed by an output buffer amplifier. The voltage at the V_{REF} pin or the on-chip reference of 2.25 V provides the reference voltage for the corresponding DAC. Figure 7 shows a block diagram of the DAC architecture. Since the input coding to the DAC is straight binary, the ideal output voltage is given by:

$$V_{OUT} = \frac{V_{REF} * D}{2^{N}}$$

where D=decimal equivalent of the binary code which is loaded to the DAC register;

0-255 for ADT7318 (8-Bits)

0-1023 for ADT7317 (10-Bits)

0-4095 for ADT7316 (12-Bits)

N = DAC resolution.

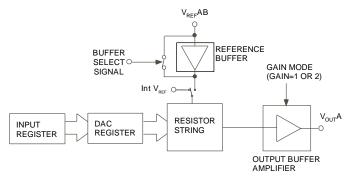
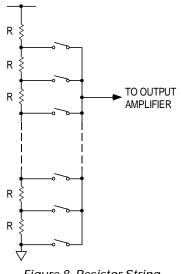



Figure 7. Single DAC channel architecture

Resistor String

The resistor string section is shown in Figure 8. It is simply a string of resistors, each of value 603Ω approximately. The digital code loaded to the DAC register determines at what node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is guaranteed monotonic.

STRING DAC A STRING DAC B

There is a reference pin for each pair of DACs. The refer-

V...-AB

ence inputs are buffered but can also be individually con-

DAC External Reference Inputs

2 25 V

figured as unbuffered.

Figure 9. DAC Reference Buffer Circuit

The advantage with the buffered input is the high impedance it presents to the voltage source driving it. However if the unbuffered mode is used, the user can have a reference voltage as low as 0.25 V and as high as $V_{\rm DD}$ since there is no restriction due to headroom and footroom of the reference amplifier.

If there is a buffered reference in the circuit, there is no need to use the on-chip buffers. In unbuffered mode the input impedance is still large at typically 90 k Ω per reference input for $0\text{-}V_{REF}$ output mode and 45 k Ω for $0\text{-}2V_{REF}$ output mode.

The buffered/unbuffered option is controlled by the DAC Configuration Register (address 1Bh, see data register descriptions). The LDAC Configuration register controls the option to select between internal and external voltage references. The default setting is for external reference selected.

Output Amplifier

The output buffer amplifier is capable of generating output voltages to within 1mV of either rail. Its actual range depends on the value of $V_{\rm REF}$, GAIN and offset error. If a gain of 1 is selected (Bits 0-3 of DAC Configuration register = 0) the output range is 0.001 V to $V_{\rm REF}$. If a gain of 2 is selected (Bits 0-3 of DAC Configuration register = 1) the output range is 0.001 V to $2V_{\rm REF}$. However because of clamping the maximum output is limited to $V_{\rm DD}$ - 0.001V.

The output amplifier is capable of driving a load of $4k7k\Omega$ to V_{DD} or $4k7k\Omega$ to GND in parallel with 200pF to GND. See Figure 4. The source and sink capabilities of the output amplifier can be seen in the plot in TPC 11.

The slew rate is 0.7V/ μs with a half-scale settling time to +/-0.5 LSB (at 8 bits) of 6 $\mu s.$

THERMAL VOLTAGE OUTPUT

The ADT7316/17/18 has the capability of outputting a voltage that is proportional to temperature. DAC A output can be configured to represent the temperature of the internal sensor while DAC B output can be configured to represent the external temperature sensor. Bits C5 and C6 of Control Configuration 3 register select the temperature

Figure 8. Resistor String

proportional output voltage. Each time a temperature measurement is taken the DAC output is updated. The output resolution for the ADT7318 is 8 bits with 1°C change corresponding to one LSB change. The output resolution for the ADT7316 and ADT7317 is capable of 10 bits with 0.25°C change corresponding to one LSB change. The default output resolution for the ADT7316 and ADT7317 is 8 bits. To increase this to 10 bits, set C1 = 1 of Control Configuration 3 register. The default output range is 0V-V_{REF} and this can be increased to 0V- $2V_{REF}$. Increasing the output voltage span to $2V_{REF}$ can be done by setting D0 = 1 for DAC A (Internal Temperature Sensor) and D1 = 1 for DAC B (External Temperature Sensor) in DAC Configuration register (address 1Bh).

The output voltage is capable of tracking a max temperature range of -128°C to +127°C but the default setting is -40°C to +127°C. If the output voltage range is $0V-V_{REF}$ $(V_{REF} = 2.25 \text{ V})$ then this corresponds to 0V representing -40°C and 1.48V representing +127°C. This of course will give an upper deadband between 1.48V and V_{REF} .

The Internal and External Analog Temperature Offset registers can be used to vary this upper deadband and consequently the temperature that 0V corresponds to. Tables 2 and 3 give examples of how this is done using a DAC output voltage span of V_{REF} and 2V_{REF} respectively. Simply write in the temperature value, in 2's complement format, that you want OV to start at. For example, if you are using the DAC A output and you want 0V to start at -40°C then program D8h into the Internal Analog Temperature Offset register (address 21h). This is an 8-bit register and thus only has a temperature offset resolution of 1°C for all device models. Use the following formulas to determine the value to program into the offset registers.

Negative temperatures : -

Offset Register Code(d)* = (0V Temp) + 128*D7 of Offset Register Code is set to 1 for negative temperatures. Example :

Offset Register
$$Code(d) = (-40) + 128$$

$$= 88d = 58h$$

Since a negative temperature has been inputted into the equation, DB7 (MSB) of the Offset Register code is set to a 1. Therefore 58h becomes D8h.

$$58h + DB7(1) \Rightarrow D8h$$

Positive temperatures : -

Offset Register Code(d) = 0V Temp

Example :

Offset Register Code (d) = 10d = 0Ah

Table 2. Thermal Voltage Output (0V-V_{REF})

O/P Voltage	Default °C	Max °C	Sample °C
0V	-40	-128	0
0.5V	+17	-71	+56
1 V	+73	-15	+113

ADT7316/7317/7318

1.12V	+87	-1	+127
1.47V	+127	+39	UDB*
1.5V	UDB*	+42	UDB*
2 V	UDB*	+99	UDB*
2.25V	UDB*	+127	UDB*

* Upper deadband has been reached. DAC output is not capable of increasing. Reference Figure 6.

Table 3. Thermal Voltage Output, (0V-2V_{REF})

O/P Voltage	Default °C	Max °C	Sample °C	
0 V	-40	-128	0	
0.25V	-26	-114	14	
0.5V	+12	-100	+28	
0.75V	+3	-85	43	
1 V	+17	-71	+57	
1.12V	+23	-65	+63	
1.47V	+43	-45	+83	
1.5V	+45	-43	+85	
2 V	+73	-15	+113	
2.25V	+88	0	+127	
2.5V	+102	+14	UDB*	
2.75V	+116	+28	UDB*	
3V	UDB*	+42	UDB*	
3.25V	UDB*	+56	UDB*	
3.5V	UDB*	+70	UDB*	
3.75V	UDB*	+85	UDB*	
4 V	UDB*	+99	UDB*	
4.25V	UDB*	+113	UDB*	
4.5V	UDB*	+127	UDB*	

* Upper deadband has been reached. DAC output is not capable of increasing. Reference Figure 6.

The following equation is used to work out the various temperatures for the corresponding 8-bit DAC output :-8

$$3\text{-Bit Temp} = (DAC O/P \div 1 LSB) + (0V Temp)$$

For example, if the output is 1.5V, $V_{REF} = 2.25$ V, 8-bit DAC has an LSB size = $2.25V/256 = 8.79x10^{-3}$, and 0V Temp is at -128°C then the resultant temperature works out to be :-

$$(1.5 \div 8.79 \times 10^{-3}) + (-128) = +43^{\circ}C$$

The following equation is used to work out the various temperatures for the corresponding 10-bit DAC output :-10-Bit Temp = $((DAC O/P \div 1 LSB)x0.25) + (0V Temp)$

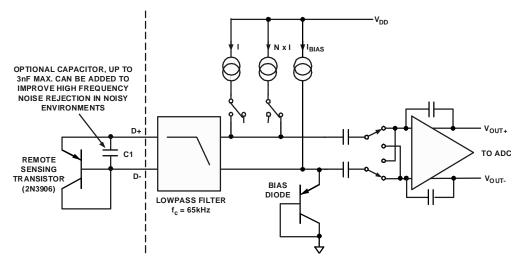


Figure 10. Signal Conditioning for External Diode temperature Sensors

For example, if the output is 0.4991V, $V_{REF} = 2.25$ V, 10bit DAC has an LSB size = $2.25V/1024 = 2.197x10^{-3}$, and 0V Temp is at -40°C then the resultant temperature works out to be :-

 $((0.4991 \div 2.197 \times 10^{-3}) \times 0.25) + (-40) = +16.75^{\circ}C$

Figure 11 shows a graph of DAC output vs temperature for a $V_{REF} = 2.25$ V.

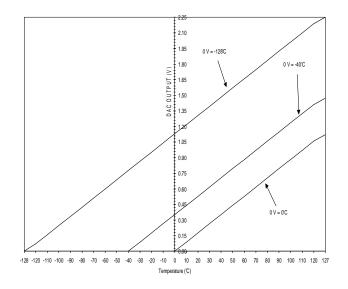


Figure 11. DAC Output vs Temperature, V_{REF} = 2.25 V

FUNCTIONAL DESCRIPTION - MEASUREMENT

TEMPERATURE SENSOR

The ADT7316/7317/7318 contains an A-D converter with special input signal conditioning to enable operation with external and on-chip diode temperature sensors. When the ADT7316/7317/7318 is operating in single channel mode, the A to D converter continually processes the measurement taken on one channel only. This channel is preselected by bits C0 and C1 in Control Configuration 2 Register (address 19h). When in Round Robin mode the analog input multiplexer sequentially selects the V_{DD} input channel, the on-chip temperature sensor to measure its internal temperature and then the external temperature sensor. These signals are digitized by the ADC and the results stored in the various Value Registers.

The measured results are compared with the Internal and External, T_{HIGH} and T_{LOW} limits. These temperature limits are stored in on-chip registers. If the temperature limits are not masked out then any out of limit comparisons generate flags that are stored in Interrupt Status 1 Register. One or more out-of limit results will cause the INT/INT output to pull either high or low depending on the output polarity setting.

Theoretically, the temperature sensor and ADC can measure temperatures from -128°C to +127°C with a resolution of 0.25°C. However, temperatures outside T_A are outside the guaranteed operating temperature range of the device. Temperature measurement from -128°C to +127°C is possible using an external sensor.

Temperature measurement is initiated by three methods. The first method is applicable when the part is in single channel measurement mode. The temperature is measured 16 times and internally averaged to reduce noise. The total time to measure a temperature channel is typically 25.92ms (1.62ms x 16) for the internal temperature sensor and 16.8ms (1.05ms x 16) for the external temperature

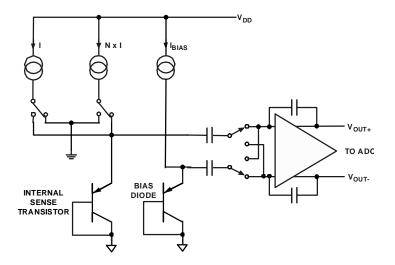


Figure 12. Top Level Structure of Internal Temperature Sensor

sensor. The new temperature value is loaded into the Temperature Value Register and ready for reading by the I^2C or SPI interface. The user has the option of disabling the averaging by setting a bit (Bit 5) in the Control Configuration Register 2 (address 19h). The ADT7316/7317/7318 defaults on power-up with the averaging enabled.

The second method is applicable when the part is in Round Robin measurement mode. The part measures both the internal and external temperature sensors as it cycles through all possible measurement channels. The two temperature channels are measured each time the part runs a round robin sequence. In round robin mode the part is continuously measuring all channels.

Temperature measurement is also initiated after every read or write to the part when the part is in either single channel measurement mode or Round Robin measurement mode. Once serial communication has started, any conversion in progress is stopped and the ADC reset. Conversion will start again immediately after the serial communication has finished. The temperature measurement proceeds normally as described above.

V_{DD} MONITORING

The ADT7316/17/18 also has the capability of monitoring it's own power supply. The part measures the voltage on it's $V_{\rm DD}$ pin to a resolution of 10 bits. The resultant value is stored in two 8-bit registers, the two LSBs stored in register address 03h and the eight MSBs are stored in register address 06h. This allows the user to have the option of just doing a one byte read if 10-bit resolution is not important. The measured result is compared with $V_{\rm HIGH}$ and $V_{\rm LOW}$ limits. If the $V_{\rm DD}$ interrupt is not masked out then any out of limit comparison generates a flag in Interrupt Status 2 Register and one or more out-of-limit results will cause the INT/INT output to pull either high or low depending on the output polarity setting.

Measuring the voltage on the V_{DD} pin is regarded as monitoring a channel. Therefore, along with the Internal and External temperature sensors the V_{DD} voltage makes

up the third and final monitoring channel. You can select the V_{DD} channel for single channel measurement by setting Bit C4 = 1 and setting Bits C0 to C2 to all 0's in Control Configuration 2 register.

When measuring the $V_{\rm DD}$ value, the reference for the ADC is sourced from the Internal Reference. Table 4 shows the data format. As the max $V_{\rm DD}$ voltage measurable is 7 V, internal scaling is performed on the $V_{\rm DD}$ voltage to match the 2.25V internal reference value. Below is an example of how the transfer function works.

$$V_{DD} = 5 V$$

ADC Reference = 2.25 V

1 LSB = ADC Reference / $2^{10} = 2.25$ / 1024 = 2.197 mV

Scale Factor = Fullscale V_{CC} / ADC Reference = 7 / 2.25 = 3.11

Conversion Result = V_{DD} / ((7/Scale Factor) x LSB size)

= 2DBh

TABLE 4.	V _{DD}	Data	Format,	$V_{REF} =$	2.25V
----------	-----------------	------	---------	-------------	-------

Digital Output		
Binary	Hex	
01 0110 1110	16E	
01 1011 0111	1B7	
10 0000 0000	200	
10 0100 1001	249	
10 1001 0010	292	
10 1101 1011	2DB	
11 0010 0100	324	
11 0110 1101	36D	
	Binary 01 0110 1110 01 1011 0111 10 0000 0000 10 0100 1001 10 1001 0010 10 1001 0010 10 1001 0010 11 0010 0100	

ADT7316/7317/7318

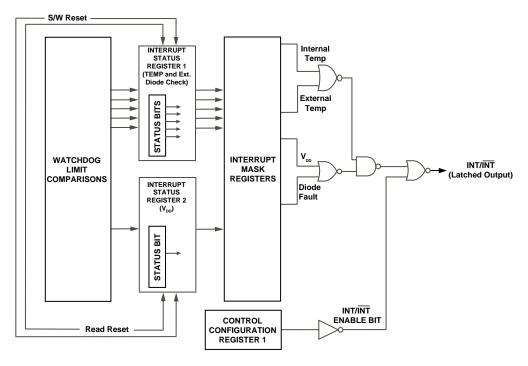


Figure 13. ADT7316/17/18 Interrupt Structure

6.5 V	11 1011 0110	3B6
7 V	11 1111 1111	3FF

ON-CHIP REFERENCE

The ADT7316/17/18 has an on-chip 1.2 V band-gap reference which is gained up by a switched capacitor amplifier to give an output of 2.25 V. The amplifier is powered up for the duration of the device monitoring phase and is powered down once monitoring is disabled. This saves on current consumption. On power-up the default mode is to have the internal reference selected as the reference for the ADC. The ADC is used for measuring V_{DD} , internal and external temperature sensors. The internal reference is always used when measuring V_{DD} , the internal and external temperature sensors. The external reference is the default power-up reference for the DACs.

ROUND ROBIN MEASUREMENT

On power-up the ADT7316/17/18 goes into Round Robin mode but monitoring is disabled. Setting Bit C0 of Configuration Register 1 to a 1 enables conversions. It sequences through the three channels of V_{DD} , Internal temperature sensor and External temperature sensor and takes a measurement from each. Once the conversion is completed on the external temperature sensor, the device loops around for another measurement cycle on all three channels. This method of taking a measurement on all three channels in one cycle is called Round Robin. Setting Bit 4 of Control Configuration 2 (address 19h) disables the Round Robin mode and in turn sets up the single channel mode. The single channel mode is where only one channel, eg. Internal temperature sensor, is measured in each conversion cycle.

The time taken to monitor all channels will normally not be of interest, as the most recently measured value can be read at any time.

For applications where the Round Robin time is important, it can be easily calculated.

As mentioned previously a conversion on the internal temperature channel takes 25.92 ms, on the external temperature channel it takes 16.8ms and on the $V_{\rm DD}$ channel it takes 712 us. These values are typical times and the channels have averaging on. This means that each channel is measured 16 times and internally averaged to reduce noise.

The total cycle time for voltage and temperature channels is therefore nominally :

25.92ms + 16.8ms + 712μ s = 43.432 ms

The total cycle time with averaging off is: 43.432 ms / 16 = 2.7145 ms

SINGLE CHANNEL MEASUREMENT

Setting C4 of Control Configuration 2 register enables the single channel mode and allows the ADT7316/17/18 to focus on one channel only. A channel is selected by writing to bits C0:C2 in register Control Configuration 2 register. For example to select the V_{DD} channel for monitoring, write to the Control Configuration 2 register and set C4 to 1 (if not done so already), then write all 0's to bits C0 to C2. All subsequent conversions will be done on the V_{DD} channel only. To change the channel selection to the Internal temperature channel, write to the Control Configuration 2 register and set C0 = 1. When measuring in single channel mode, conversions on the channel selected occur directly after each other. Any communication

to the ADT7316/17/18 stops the conversions but they are restarted once the read or write operation is completed.

MEASUREMENT METHOD

INTERNAL TEMPERATURE MEASUREMENT

The ADT7316/7317/7318 contains an on-chip bandgap temperature sensor, whose output is digitized by the onchip ADC. The temperature data is stored in the Internal Temperature Value Register. As both positive and negative temperatures can be measured, the temperature data is stored in two's complement format, as shown in Table 5. The thermal characteristics of the measurement sensor could change and therefore an offset is added to the measured value to enable the transfer function to match the thermal characteristics. This offset is added before the temperature data is stored. The offset value used is stored in the Internal Temperature Offset Register.

EXTERNAL TEMPERATURE MEASUREMENT

The ADT7316/7317/7318 can measure the temperature of one external diode sensor or diode-connected transistor.

The forward voltage of a diode or diode-connected transistor, operated at a constant current, exhibits a negative temperature coefficient of about $-2mV/^{\circ}C$. Unfortunately, the absolute value of V_{be} varies from device to device, and individual calibration is required to null this out, so the technique is unsuitable for mass-production.

The time taken to measure the external temperature can be reduced by setting C0 of Control Configuration 3 register (1Ah). This increases the ADC clock speed from 1.4KHz to 22KHz but the analog filters on the D+ and D- input pins are switched off to accommodate the higher clock speeds. Running at the slower ADC speed and with averaging on, the time taken to measure the external temperature is 16.8ms while on the fast ADC this time is reduced to 712 μ s.

The technique used in the ADT7316/7317/7318 is to measure the change in $V_{\rm be}$ when the device is operated at two different currents.

This is given by:

 $\Delta V_{be} = KT/q \times ln(N)$

where:

- K is Boltzmann's constant
- q is charge on the carrier
- T is absolute temperature in Kelvins
- N is ratio of the two currents

Figure 10 shows the input signal conditioning used to measure the output of an external temperature sensor. This figure shows the external sensor as a discrete substrate transistor. If a PNP transistor is used the base is connected to the D- input and the emitter to the D+ input. If an NPN transistor is used, the emitter is connected to the D- input and the base to the D+ input.

We recommend that a 2N3906 be used as the external transistor.

To prevent ground noise interfering with the measurement, the more negative terminal of the sensor is not referenced to ground, but is biased above ground by an internal diode at the D- input. As the sensor is operating in a noisy environment, C1 is provided as a noise filter. See the section on layout considerations for more information on C1.

To measure ΔV_{be} , the sensor is switched between operating currents of I and N x I. The resulting waveform is passed through a lowpass filter to remove noise, thence to a chopper-stabilized amplifier that performs the functions of amplification and rectification of the waveform to produce a DC voltage proportional to ΔV_{be} . This voltage is measured by the ADC to give a temperature output in 8-bit two's complement format. To further reduce the effects of noise, digital filtering is performed by averaging the results of 16 measurement cycles.

LAYOUT CONSIDERATIONS

Digital boards can be electrically noisy environments, and care must be taken to protect the analog inputs from noise, particularly when measuring the very small voltages from a remote diode sensor. The following precautions should be taken:

- 1. Place the ADT7316/17/18 as close as possible to the remote sensing diode. Provided that the worst noise sources such as clock generators, data/address buses and CRTs are avoided, this distance can be 4 to 8 inches.
- 2. Route the D+ and D- tracks close together, in parallel, with grounded guard tracks on each side. Provide a ground plane under the tracks if possible.
- 3. Use wide tracks to minimize inductance and reduce noise pickup. 10 mil track minimum width and spacing is recommended.

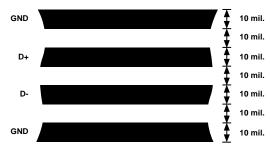


Figure 14. Arrangement of Signal Tracks

4. Try to minimize the number of copper/solder joints, which can cause thermocouple effects. Where copper/solder joints are used, make sure that they are in both the D+ and D- path and at the same temperature.

Thermocouple effects should not be a major problem as 1°C corresponds to about 240 μ V, and thermocouple voltages are about 3μ V/°C of temperature difference. Unless there are two thermocouples with a big temperature differential between them, thermocouple voltages should be much less than 200mV.

5. Place $0.1\mu F$ bypass and 2200pF input filter capacitors close to the ADT7316/17/18.

- 6. If the distance to the remote sensor is more than 8 inches, the use of twisted pair cable is recommended. This will work up to about 6 to 12 feet.
- 7. For really long distances (up to 100 feet) use shielded twisted pair such as Belden #8451 microphone cable. Connect the twisted pair to D+ and D- and the shield to GND close to the ADT7316/17/18. Leave the remote end of the shield unconnected to avoid ground loops.

Because the measurement technique uses switched current sources, excessive cable and/or filter capacitance can affect the measurement. When using long cables, the filter capacitor may be reduced or removed.

Cable resistance can also introduce errors. 1Ω series resistance introduces about 0.5°C error.

TEMPERATURE VALUE FORMAT

One LSB of the ADC corresponds to 0.25° C. The ADC can theoretically measure a temperature span of 255° C. The internal temperature sensor is guaranteed to a low value limit of -40°C. It is possible to measure the full temperature span using the external temperature sensor. The temperature data format is shown in Tables 5.

The result of the internal or external temperature measurements is stored in the temperature value registers, and is compared with limits programmed into the Internal or External High and Low Registers.

TABLE 5. Temperature Data Format (Internal andExternal Temperature)

Temperature	Digital Output
	DB9DB0
-40 °C	11 0110 0000
-25 °C	11 1001 1100
-10 °C	11 1101 1000
-0.25 °C	11 1111 1111
0 °C	00 0000 0000
+0.25 °C	00 0000 0001
+10 °C	00 0010 1000
+25 °C	00 0110 0100
+50 °C	00 1100 1000
+75 °C	01 0010 1100
+100 °C	01 1001 0000
+105 °C	01 1010 0100
+125 °C	01 1111 0100

Temperature Conversion Formula:

1. Positive Temperature = ADC Code/4

2. Negative Temperature = $(ADC Code^* - 512)/4$

*DB9 is removed from the ADC Code

INTERRUPTS

The measured results from the internal temperature sensor, external temperature sensor and the V_{DD} pin are compared with the T_{HIGH}/V_{HIGH} (greater than comparison) and T_{LOW}/V_{LOW} (greater than or equal to comparison) limits. An interrupt occurs if the measurement exceeds or equals the limit registers. These limits are stored in onchip registers. Please note that the limit registers are 8 bits long while the conversion results are 10 bits long. If the limits are not masked out then any out-of-limit comparisons generate flags that are stored in Interrupt Status 1 Register (address = 00h) and Interrupt Status 2 Register (address = 01h). One or more out-of limit results will cause the INT/INT output to pull either high or low depending on the output polarity setting. It is good design practice to mask out interrupts for channels that are of no concern to the application.

Figure 13 shows the interrupt structure for the ADT7316/ 17/18. It gives a block diagram representation of how the various measurement channels affect the INT/INT pin.

ADT7316/7317/7318 REGISTERS

The ADT7316/17/18 contains registers that are used to store the results of external and internal temperature measurements, $V_{\rm DD}$ value measurements, high and low temperature and supply voltage limits, set output DAC voltage levels, configure multipurpose pins and generally control the device. A description of these registers follows.

The register map is divided into registers of 8-bits long. Each register has it's own individual address but some consist of data that is linked with other registers. These registers hold the 10-bit conversion results of measurements taken on the Temperature and V_{DD} channels. For example, the 8 MSBs of the V_{DD} measurement are stored in register address 06h while the 2 LSBs are stored in register address 03h. The link involved between these types of registers is that when the LSB register is read first then the MSB registers associated with that LSB register are locked to prevent any updates. To unlock these MSB registers the user has only to read any one of them, which will have the affect of unlocking all previously locked MSB registers. So for the example given above if register 03h was read first then MSB registers 06h and 07h would be locked to prevent any updates to them. If register 06h was read then this register and register 07h would be subsequently unlocked.

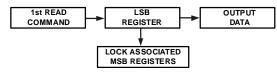


Figure 15. Phase 1 of 10-Bit Read

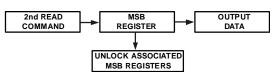


Figure 16. Phase 2 of 10-Bit Read

If an MSB register is read first, it's corresponding LSB register is not locked thus leaving the user with the option of just reading back 8 bits (MSB) of a 10-bit conversion result. Reading an MSB register first does not lock up other MSB registers and likewise reading an LSB register first does not lock up other LSB registers.

Table 6. List of ADT7316/7317/7318 Registers

RD/WR Address	Name	Power-on Default
00h	Interrupt Status 1	00h
01h	Interrupt Status 2	00h
02h	RESERVED	00h
03h	Internal Temp & V _{DD} LSBs	00h
04h	External Temp LSBs	00h
05h	RESERVED	00h
06h	V _{DD} MSBs	00h
07h	Internal Temperature MSBs	00h
08h	External Temp MSBs	00h
09h-0Fh	RESERVED	00h
10h	DAC A LSBs (ADT7316/17 only)	00h
11h	DAC A MSBs	00h
12h	DAC B LSBs (ADT7316/17 only)	00h
13h	DAC B MSBs	00h
14h	DAC C LSBs (ADT7316/17 only)	00h
15h	DAC C MSBs	00h
16h	DAC D LSBs (ADT7316/17 only)	00h
17h	DAC D MSBs	00h
18h	Control CONFIG 1	00h
19h	Control CONFIG 2	00h
1Ah	Control CONFIG 3	00h
1Bh	DAC CONFIG	00h
1Ch	LDAC CONFIG	00h
1Dh	Interrupt Mask 1	00h
1Eh	Interrput Mask 2	00h
1Fh	Internal Temp Offset	00h
20h	External Temp Offset	00h
21h	Internal Analog Temp Offset	D8h

ADT7316/7317/7318

22h	External Analog Temp Offset	D8h
23h	V_{DD} V_{HIGH} Limit	C7h
24h	V _{DD} V _{LOW} Limit	62h
25h	Internal T _{HIGH} Limit	64h
26h	Internal T _{LOW} Limit	C9h
27h	External T _{HIGH}	FFh
28h External T _{LOW}		00h
29h-4CH	RESERVED	
4Dh	Device ID	01h/09h/05h
4Eh	Manufacturer's ID	41h
4Fh Silicon Revision		00h
50h-7Eh	RESERVED	00h
7 F	SPI Lock Status	00h
80-FF	RESERVED	00h

Interrupt Status 1 Register (Read only) [Add. = 00h] This 8-bit read only register reflects the status of some of the interrupts that can cause the INT/INT pin to go active. This register is reset by a read operation provided that any out of limit event has been corrected. It is also reset by a software reset.

Table 7. Interrupt Status 1 Register

D7	D6	D5	D4	D3	D2	D1	D0
N/A	N/A	N/A	0*	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function
D0	1 when Internal Temp Value exceeds $T_{\rm HIGH}$ limit. Any internal temperature reading greater than the limit set will cause an out of limit event.
D1	1 when Internal Temp Value exceeds T_{LOW} limit. Any internal temperature reading less than or equal to the limit set will cause an out of limit event.
D2	1 when External Temp Value exceeds $T_{\rm HIGH}$ limit. The default value for this limit register is -1°C so any external temperature reading greater than the limit set will cause an out of limit event.
D3	1 when External Temp Value exceeds T_{LOW} limit. The default value for this limit register is 0°C so

ADT7316/7317/7318

any external temperature reading less than or equal to the limit set will cause an out of limit event.

D4	1 indicates a fault (open or short) for the external
	temperature sensor.

Interrupt Status 2 Register (Read only) [Add. = 01h] This 8-bit read only register reflects the status of the V_{DD} interrupt that can cause the INT/INT pin to go active. This register is reset by a read operation provided that any out of limit event has been corrected. It is also reset by a software reset.

Table 8. Interrupt Status 2 Register

D7	D6	D5	D4	D3	D2	D1	D0
N/A	N/A	N/A	0*	N/A	N/A	N/A	N/A

*Default settings at Power-up.

Function

Rit

ы	I unction
D4	1 when V_{DD} value is greater than corresponding V_{HIGH} limit. 1 when V_{DD} is less than or equal to corresponding $V_{I,OW}$ limit.
	VLOW mmt.

INTERNAL TEMPERATURE VALUE/V_{DD} VALUE REGISTER LSBs (Read only) [Add. = 03h]

This Internal Temperature Value and $V_{\rm DD}$ Value Register is a 8-bit read-only register. It stores the two LSBs of the 10-bit temperature reading from the internal temperature sensor and also the two LSBs of the 10-bit supply voltage reading.

Table 9. Internal Temp/V _{DD}	LSBs
--	------

D 7	D6	D5	D4	D3	D2	D1	D0
N/A	N/A	N/A	N/A	V1	LSB	T1	LSB
N/A	N/A	N/A	N/A	0*	0*	0*	0*

*Default settings at Power-up.

Function	
LSB of Internal Temperature Value	
B1 of Internal Temperature Value	
LSB of V _{DD} Value	
B1 of V _{DD} Value	
	LSB of Internal Temperature Value B1 of Internal Temperature Value LSB of V _{DD} Value

EXTERNAL TEMPERATURE VALUE REGISTER LSBS (Read only) [Add. = 04h]

This External Temperature Value is a 8-bit read-only register. It stores the two LSBs of the 10-bit temperature reading from the external temperature sensor.

Ta	ble 10.	Exter	nal Ten	iperatui	e LSB	S
		D 4	DA	D A		DA

D7	D6	D5	D4	D3	D2	D1	D0
N/A	N/A	N/A	N/A	N/A	N/A	T1	LSB
N/A	N/A	N/A	N/A	N/A	N/A	0*	0*

*Default settings at Power-up.

Bit	Function
D0	LSB of External Temperature Value
D1	B1 of External Temperature Value

 V_{DD} VALUE REGISTER MSBS (Read only) [Add. = 06h] This 8-bit read only register stores the supply voltage value. The 8 MSBs of the 10-bit value are stored in this register.

$\mathbf{I} \mathbf{a} \mathbf{b} \mathbf{i} \mathbf{c} \mathbf{I} \mathbf{I} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{j} \mathbf{j} \mathbf{j} \mathbf{j} \mathbf{i} \mathbf{a} \mathbf{i} \mathbf{u} \mathbf{c} \mathbf{i} \mathbf{i} \mathbf{b} \mathbf{b} \mathbf{j}$	Tabl	e 11.	VDD	Value	MSBs
---	------	-------	-----	-------	-------------

D7	D6	D5	D4	D3	D2	D1	D0
V9	V8	V7	V6	V5	V4	V3	V2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

INTERNAL TEMPERATURE VALUE REGISTER MSBS (Read only) [Add. = 07h]

This 8-bit read only register stores the Internal Temperature value from the internal temperature sensor in twos complement format. The 8 MSBs of the 10-bit value are stored in this register.

Table 12.	Internal	Temperature	Value	MSBs
-----------	----------	-------------	-------	------

D 7	D6	D5	D4	D3	D2	D1	D0
Т9	Т8	Τ7	T6	T5	Τ4	Т3	T2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

EXTERNAL TEMPERATURE VALUE REGISTER MSBS (Read only) [Add. = 08h]

This 8-bit read only register stores the External Temperature value from the external temperature sensor in twos complement format. The 8 MSBs of the 10-bit value are stored in this register.

Table 13.	External	Temperature	Value	MSBs
1 abic 10.	LAUTHA	I chipci atur c	value	MDD3

D7	D6	D5	D4	D3	D2	D1	D0
Т9	T8	Τ7	T6	T5	Τ4	Τ3	T2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

DAC A REGISTER LSBS (Read/Write) [Add. = 10h] This 8-bit read/write register contains the 4/2 LSBs of the ADT7316/7317 DAC A word respectively. The value in this register is combined with the value in the DAC A Register MSBs and converted to an analog voltage on the $V_{OUT}A$ pin. On power-up the voltage output on the $V_{OUT}A$ pin is 0 V.

Table 14.DAC A (ADT7316) LSBs

B3 B2 B1 LSB N/A N/A N/A 0* 0* 0* 0* N/A N/A N/A	D7	D6	D5	D4	D3	D2	D1	D0
0* 0* 0* 0* N/A N/A N/A N/A	B3	B2	B1	LSB	N/A	N/A	N/A	N/A
	0*	0*	0*	0*	N/A	N/A	N/A	N/A

*Default settings at Power-up.

Table 15. DAC A (ADT7317) LSBs

D7	D6	D5	D4	D3	D2	D1	D0
B1	LSB	N/A	N/A	N/A	N/A	N/A	N/A
0*	0*	N/A	N/A	N/A	N/A	N/A	N/A

*Default settings at Power-up.

DAC A REGISTER MSBS (Read/Write) [Add. = 11h]

This 8-bit read/write register contains the 8 MSBs of the DAC A word. The value in this register is combined with the value in the DAC A Register LSBs and converted to an analog voltage on the $V_{OUT}A$ pin. On power-up the voltage output on the $V_{OUT}A$ pin is 0 V.

Table 16. DAC A MSBs

D 7	D6	D5	D4	D3	D2	D1	D0
MSB	B8	B7	B6	B5	B4	B3	B2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

DAC B REGISTER LSBS (Read/Write) [Add. = 12h]

This 8-bit read/write register contains the 4/2 LSBs of the ADT7316/7317 DAC B word respectively. The value in this register is combined with the value in the DAC B Register MSBs and converted to an analog voltage on the $V_{OUT}B$ pin. On power-up the voltage output on the $V_{OUT}B$ pin is 0 V.

Table 17. DAC B (ADT7316) LSBs

D 7	D6	D5	D4	D3	D2	D1	D0
B3	B2	B1	LSB	N/A	N/A	N/A	N/A
0*	0*	0*	0*	N/A	N/A	N/A	N/A

*Default settings at Power-up.

Table 18. DAC B (ADT7317) LSBs

D7	D6	D5	D4	D3	D2	D1	D0
B1	LSB	N/A	N/A	N/A	N/A	N/A	N/A
0*	0*	N/A	N/A	N/A	N/A	N/A	N/A

DAC B REGISTER MSBS (Read/Write) [Add. = 13h] This 8-bit read/write register contains the 8 MSBs of the DAC B word. The value in this register is combined with the value in the DAC B Register LSBs and converted to an analog voltage on the $V_{OUT}B$ pin. On power-up the voltage output on the $V_{OUT}B$ pin is 0 V.

Table 19. DAC	В	MSBs
---------------	---	------

D 7	D6	D5	D4	D3	D2	D1	D0
MSB	B8	B7	B6	B 5	B4	B3	B2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

DAC C REGISTER LSBS (Read/Write) [Add. = 14h] This 8-bit read/write register contains the 4/2 LSBs of the ADT7316/7317 DAC C word respectively. The value in this register is combined with the value in the DAC C Register MSBs and converted to an analog voltage on the $V_{OUT}C$ pin. On power-up the voltage output on the $V_{OUT}C$ pin is 0 V.

Table 20. DAC C (ADT7316) LSBs

D7	D6	D 5	D4	D3	D2	D1	D0
B3	B2	B1	LSB	N/A	N/A	N/A	N/A
0*	0*	0*	0*	N/A	N/A	N/A	N/A

*Default settings at Power-up.

Table 21. DAC C (ADT7317) LSBs

D7	D6	D5	D4	D3	D2	D1	D0
B1	LSB	N/A	N/A	N/A	N/A	N/A	N/A
0*	0*	N/A	N/A	N/A	N/A	N/A	N/A

*Default settings at Power-up.

DAC C REGISTER MSBS (Read/Write) [Add. = 15h] This 8-bit read/write register contains the 8 MSBs of the DAC C word. The value in this register is combined with the value in the DAC C Register LSBs and converted to an analog voltage on the $V_{OUT}C$ pin. On power-up the voltage output on the $V_{OUT}C$ pin is 0 V.

Table 22. DAC C MSBs

D 7	D6	D5	D4	D3	D2	D1	D0
MSB	B8	B7	B6	B 5	B4	B3	B2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

DAC D REGISTER LSBS (Read/Write) [Add. = 16h] This 8-bit read/write register contains the 4/2 LSBs of the ADT7316/7317 DAC D word respectively. The value in this register is combined with the value in the DAC D Register MSBs and converted to an analog voltage on the

 $V_{\rm OUT}D$ pin. On power-up the voltage output on the $V_{\rm OUT}D$ pin is 0 V.

Table 23. DAC D (ADT7316) LSBs

D 7	D6	D 5	D4	D3	D2	D1	D0
B3	B2	B1	LSB	N/A	N/A	N/A	N/A
0*	0*	0*	0*	N/A	N/A	N/A	N/A

*Default settings at Power-up.

Table 24. DAC D (ADT7317) LSBs

D7	D6	D5	D4	D3	D2	D1	D0
B1	LSB	N/A	N/A	N/A	N/A	N/A	N/A
0*	0*	N/A	N/A	N/A	N/A	N/A	N/A

*Default settings at Power-up.

DAC D REGISTER MSBS (Read/Write) [Add. = 17h] This 8-bit read/write register contains the 8 MSBs of the DAC D word. The value in this register is combined with the value in the DAC D Register LSBs and converted to an analog voltage on the $V_{OUT}D$ pin. On power-up the voltage output on the $V_{OUT}D$ pin is 0 V.

Table	25.	DAC	D	MSBs

D7	D6	D5	D4	D3	D2	D1	D0
MSB	B8	B7	B6	B5	B4	B3	B2
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

CONTROL CONFIGURATION 1 REGISTER (Read/ Write) [Add. = 18h]

This configuration register is an 8-bit read/write register that is used to setup some of the operating modes of the ADT7316/17/18.

Table	26.	Control	Configuration	1
-------	-----	---------	---------------	---

D7	D6	D5	D4	D3	D2	D1	D0	
PD	C6	C 5	C4	C3	C2	C1	C 0	
0*	0*	0*	0*	0*	0*	0*	0*	

*Default settings at Power-up.

Bit Function

- C0
 This bit enables/disables conversions in Round Robin and Single Channel mode. ADT7316/17/ 18 powers up in Round Robin mode but monitoring is not initiated until this bit is set. Default = 0. 0 = Stop monitoring. 1 = Start monitoring.

 C1:4
 RESERVED. Only write 0's.

 C5
 0
 Enable INT/INT Output
- C5 0 Enable INT/INT Output 1 Disable INT/INT Output

C6 Configures INT/INT output polarity. 0 Active low 1 Active High C7 Power-down Bit. Setting this bit to 1 puts the ADT7316/17/18 into standby mode. In this mode both ADC and DACs are fully powered down, but serial interface is still operational. To

CONTROL CONFIGURATION 2 REGISTER (Read/ Write) [Add. = 19h]

power up the part again just write 0 to this bit.

This configuration register is an 8-bit read/write register that is used to setup some of the operating modes of the ADT7316/17/18.

Table	97	Control	Configuration	9
I able	<i>2</i> 1.	Control	Configuration	4

D 7	D6	D5	D4	D3	D2	D1	D0
C7	C6	C 5	C4	C3	C2	C1	C0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function
C1:0	In single channel mode these bits select between V_{DD} , the internal temperature sensor and the external temperature sensor for conversion. Default is V_{DD} . $00 = V_{DD}$ 01 = Internal Temperature Sensor. 10 = External Temperature Sensor 11 - 11 = RESERVED
C2:C3	RESERVED
C4	Selects between single channel and Round Robin conversion cycle. Default is Round Robin. 0 = Round Robin. 1 = Single Channel.
C5	Default condition is to average every measure- ment on all channels 16 times. This bit disables this averaging. Channels affected are tempera- ture and V_{DD} . 0 = Enable averaging. 1 = Disable averaging.
C6	 SMBus timeout on the serial clock puts a 25ms limit on the pulse width of the clock. Ensures that a fault on the master SCL does not lock up the SDA line. 0 = Disable SMBus Timeout. 1 = Enable SMBus Timeout.
C7	Software Reset. Setting this bit to a 1 causes a software reset. All registers and DAC outputs will reset to their default settings.

CONTROL CONFIGURATION 3 REGISTER (Read/ Write) [Add. = 1Ah]

This configuration register is an 8-bit read/write register that is used to setup some of the operating modes of the

ADT7316/7317/7318

ADT7316/17/18 and also indicates if the serial bus interface has been locked.

Table 28. Control Configuration 3

D 7	D6	D5	D4	D3	D2	D1	D0	
C7	C6	C 5	C4	C3	C2	C1	C 0	
0*	0*	0*	0*	0*	0*	0*	0*	

*Default settings at Power-up.

Bit	Function
C0	Selects between fast and normal ADC conver- sion speeds for all three monitoring channels. 0 = ADC clock at 1.4 KHz. 1 = ADC clock at 22.5 KHz.
C1	On the ADT7316 and ADT7317, this bit selects between 8 bits and 10 bits DAC output resolu- tion on the Thermal Voltage Output feature. Default = 8 bits. This bit has no affect on the ADT7318 output as this part has only an 8-bit DAC. In the ADT7318 case, write 0 to this bit. 0 = 8 bits resolution. 1 = 10 bits resolution.
C2	RESERVED. Only write 0.
C3	$0 = \overline{\text{LDAC}}$ pin controls updating of DAC out- puts. 1 = DAC Configuration register and LDAC Configuration register control updating of DAC outputs.
C4	RESERVED. Only write 0.
C5	Setting this bit selects DAC A voltage output to be proportional to the internal temperature mea- surement.
C6	Setting this bit selects DAC B voltage output to be proportional to the external temperature mea- surement.
C7	DECEDVED Only write 0

C7 RESERVED. Only write 0.

DAC CONFIGURATION REGISTER (Read/Write) [Add. = 1Bh]

This configuration register is an 8-bit read/write register that is used to control the output ranges of all four DACs and also to control the loading of the DAC registers if the $\overline{\text{LDAC}}$ pin is disabled (bit C3 = 1, Control Configuration 3 register).

Table 29. DAC Configuration

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function			
D0	Selects the output range of DAC A. 0 = 0 V to V _{REF} . 1 = 0 V to 2V _{REF} .			
D1	Selects the output range of DAC B. 0 = 0 V to V _{REF} . 1 = 0 V to 2V _{REF} .			
D2	Selects the output range of DAC C. 0 = 0 V to V _{REF} . 1 = 0 V to 2V _{REF} .			
D3	Selects the output range of DAC D. 0 = 0 V to V _{REF} . 1 = 0 V to 2V _{REF} .			
D5:D4	 00 MSB write to any DAC register generates LDAC command which updates that DAC only. 01 MSB write to DAC B or DAC D register generates LDAC command which up- dates DACs A, B or DACs C, D 			
	 respectivily. 10 MSB write to DAC D register generates LDAC command which updates all 4 DACs. 11 LDAC command generated from LDAC 			
	register.			
D6	Setting this bit allows the external V_{REF} to bypass the reference buffer when supplying DACs A and B.			
D7	Setting this bit allows the external $V_{\rm REF}$ to bypass the reference buffer when supplying DACs C and D.			

LDAC CONFIGURATION REGISTER (Write only) [Add. = 1Ch]

This configuration register is an 8-bit write register that is used to control the updating of the quad DAC outputs if the $\overline{\text{LDAC}}$ pin is disabled and Bits D4 and D5 of DAC Configuration register are both set to 1. Also selects either the internal or external V_{REF} for all four DACs. Bits D0-D3 in this register are self clearing i.e. reading back from this register will always give 0's for these bits.

Table	30.	LDAC	Configuration
-------	-----	------	---------------

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
0*	0*	0*	0 *	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function
D0	Writing a 1 to this bit will generate the LDAC command to update DAC A output only.
D1	Writing a 1 to this bit will generate the LDAC command to update DAC B output only.

D2	Writing a 1 to this bit will generate the LDAC command to update DAC C output only.
D3	Writing a 1 to this bit will generate the LDAC command to update DAC D output only.
D4	$\begin{array}{l} \mbox{Selects either internal } V_{REF} \mbox{ or external } V_{REF}AB \\ \mbox{for DACs A and B.} \\ 0 = External \ V_{REF} \\ 1 = Internal \ V_{REF} \end{array}$
D5	$\begin{array}{l} \mbox{Selects either internal } V_{REF} \mbox{ or external } V_{REF}CD \\ \mbox{for DACs } C \mbox{ and } D. \\ \mbox{0 } = External \ V_{REF} \\ \mbox{1 } = Internal \ V_{REF} \end{array}$
D6:D7	RESERVED. Only write 0's.

INTERRUPT MASK 1 REGISTER (Read/Write) [Add. = 1Dh]

This mask register is an 8-bit read/write register that can be used to mask out any interrupts that can cause the $\rm INT/$ $\rm \overline{INT}$ pin to go active.

Table 31. Interrupt Mask 1

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D 5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function
D0	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D2	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D3	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D4	0 = Enable external temperature fault interrupt. 1 = Disable external temperature fault interrupt.
D5:D7	RESERVED. Only write 0's.

INTERRUPT MASK 2 REGISTER (Read/Write) [Add. = 1Eh]

This mask register is an 8-bit read/write register that can be used to mask out any interrupts that can cause the $\rm INT/$ $\rm INT$ pin to go active.

Table 32. Interrupt Mask 2

D7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D 5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

Bit	Function
D0:D3	RESERVED. Only write 0's.
D4	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D5:D7	RESERVED. Only write 0's.

INTERNAL TEMPERATURE OFFSET REGISTER (Read/Write) [Add. = 1Fh]

This register contains the Offset Value for the Internal Temperature Channel. A 2's complement number can be written to this register which is then 'added' to the measured result before it is stored or compared to limits. In this way a sort of one-point calibration can be done whereby the whole transfer function of the channel can be moved up or down. From a software point of view this may be a very simple method to vary the characteristics of the measurement channel if the thermal characteristics change. As it is an 8-bit register the temperature resolution is 1° C.

Table 33.	Internal	Temperature	Offset
-----------	----------	-------------	--------

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

EXTERNAL TEMPERATURE OFFSET REGISTER (Read/Write) [Add. = 20h]

This register contains the Offset Value for the Internal Temperature Channel. A 2's complement number can be written to this register which is then 'added' to the measured result before it is stored or compared to limits. In this way a sort of one-point calibration can be done whereby the whole transfer function of the channel can be moved up or down. From a software point of view this may be a very simple method to vary the characteristics of the measurement channel if the thermal characteristics change. As it is an 8-bit register the temperature resolution is 1° C.

Table	34.	External	Temperature	Offset
-------	-----	----------	-------------	--------

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

INTERNAL ANALOG TEMPERATURE OFFSET REGISTER (Read/Write) [Add. = 21h]

This register contains the Offset Value for the Internal Thermal Voltage output. A 2's complement number can be written to this register which is then 'added' to the measured result before it is converted by DAC A. Varying the value in this register has the affect of varying the temperature span. For example, the output voltage can represent a temperature span of -128° C to $+127^{\circ}$ C or even 0°C to

+127°C. In essence this register changes the position of 0V on the temperature scale. Anything other than -128°C to +127°C will produce an upper deadband on the DAC A output. As it is an 8-bit register the temperature resolution is 1°C. Default value is -40°C.

 Table 35.
 Internal Analog Temperature Offset

D7	D6	D 5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
1*	1*	0*	1 *	1 *	0*	0*	0*

*Default settings at Power-up.

EXTERNAL ANALOG TEMPERATURE OFFSET REGISTER (Read/Write)[Add. = 22h]

This register contains the Offset Value for the External Thermal Voltage output. A 2's complement number can be written to this register which is then 'added' to the measured result before it is converted by DAC B. Varying the value in this register has the affect of varying the temperature span. For example, the output voltage can represent a temperature span of -128° C to $+127^{\circ}$ C or even 0° C to $+127^{\circ}$ C. In essence this register changes the position of 0V on the temperature scale. Anything other than -128° C to $+127^{\circ}$ C will produce an upper deadband on the DAC B output. As it is an 8-bit register the temperature resolution is 1° C. Default value is -40° C.

 Table 36.
 External Analog Temperature Offset

D7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
1*	1*	0*	1*	1*	0*	0*	0*

*Default settings at Power-up.

 V_{DD} V_{HIGH} LIMIT REGISTER (Read/Write) [Add. = 23h] This limit register is an 8-bit read/write register which stores the V_{DD} upper limit that will cause an interrupt and activate the INT/INT output (if enabled). For this to happen the measured V_{DD} value has to be greater than the value in this register. Default value is 5.46 V.

Table 37. V_{DD} V_{HIGH} Limit

D7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
1*	1*	0*	0*	0 *	1*	1 *	1*

*Default settings at Power-up.

 V_{DD} V_{LOW} LIMIT REGISTER (Read/Write) [Add. = 24h] This limit register is an 8-bit read/write register which stores the V_{DD} lower limit that will cause an interrupt and activate the INT/INT output (if enabled). For this to happen the measured V_{DD} value has to be less than or equal to the value in this register. Default value is 2.7 V.

 Table 38.
 V_{DD}
 V_{HIGH}
 Limit

D7 D6 D5 D4 D3 D2 D1 D0

ADT7316/7317/7318

D7	D6	D5	D4	D3	D2	D1	D0	
0*	1*	1*	0*	0 *	0*	1*	0*	

*Default settings at Power-up.

INTERNAL T_{HIGH} LIMIT REGISTER (Read/Write) [Add. = 25h]

This limit register is an 8-bit read/write register which stores the 2's complement of the internal temperature upper limit that will cause an interrupt and activate the INT/INT output (if enabled). For this to happen the measured Internal Temperature Value has to be greater than the value in this register. As it is an 8-bit register the temperature resolution is 1° C. Default value is $+100^{\circ}$ C.

Table 39. Internal T _{HIGH}	Limit
--------------------------------------	-------

D7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
0*	1*	1*	0*	0*	1*	0*	0*

*Default settings at Power-up.

INTERNAL T_{LOW} LIMIT REGISTER (Read/Write) [Add. 26h]

This limit register is an 8-bit read/write register which stores the 2's complement of the internal temperature lower limit that will cause an interrupt and activate the INT/\overline{INT} output (if enabled). For this to happen the measured Internal Temperature Value has to be more negative than or equal to the value in this register. As it is an 8-bit register the temperature resolution is 1°C. Default value is -55°C.

Table 40. Internal TLOW Limit

D7	D6	D5	D4	D3	D2	D1	D 0
D7	D6	D5	D4	D3	D2	D1	D0
1*	1*	0*	0*	1*	0*	0*	1*

*Default settings at Power-up.

EXTERNAL T_{HIGH} LIMIT REGISTER (Read/Write) [Add. = 27h]

This limit register is an 8-bit read/write register which stores the 2's complement of the external temperature upper limit that will cause an interrupt and activate the INT/\overline{INT} output (if enabled). For this to happen the measured External Temperature Value has to be greater than the value in this register. As it is an 8-bit register the temperature resolution is 1°C. Default value = -1°C.

Table 41.External T_{HIGH} Limit

D 7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0
1*	1*	1*	1*	1*	1*	1*	1*

*Default settings at Power-up.

EXTERNAL T_{LOW} LIMIT REGISTER (Read/Write) [Add. = 28h]

This limit register is an 8-bit read/write register which stores the 2's complement of the external temperature lower limit that will cause an interrupt and activate the INT/ \overline{INT} output (if enabled). For this to happen the measured External Temperature Value has to be more negative than or equal to the value in this register. As it is an 8-bit register the temperature resolution is 1°C. Default value = 0°C.

Table	42.	External	TLOW	Limit
-------	-----	----------	------	-------

D7	D6	D5	D4	D3	D2	D1	D0
D7	D6	D 5	D4	D3	D2	D1	D0
0*	0*	0*	0*	0*	0*	0*	0*

*Default settings at Power-up.

DEVICE ID REGISTER (READ ONLY) [ADD. = 4DH] This 8-bit read only register indicates which part the device is in the model range. ADT7316 = 01h, ADT7317 = 09h and ADT7318 = 05h.

MANUFACTURER'S ID REGISTER (Read only) [Add. = 4Eh]

This register contains the manufacturers identification number. ADI's is 41h.

SILICON REVISION REGISTER (Read only) [Add. = 4Fh]

This register is divided into the four lsbs representing the Stepping and the four msbs representing the Version. The Stepping contains the manufacturers code for minor revisions or steppings to the silicon. The Version is the ADT7316/17/18 version number. The ADT7316/17/18's version number is 0100b (4h).

SPI LOCK STATUS REGISTER (Read only) [Add. = 7Fh]

Bit D0 (LSB) of this read only register indicates whether the SPI interface is locked or not. Writing to this register will cause the device to malfunction. Default value is 00h. $0 = I^2C$ interface

1 = SPI interface selected and locked.

ADT7316/7317/7318 SERIAL INTERFACE

There are two serial interfaces that can be used on this part, I^2C and SPI. The device will power up with the serial interface in I^2C mode but it is not locked into this mode. To stay in I^2C mode it is recommended that the user ties the \overline{CS} line to either V_{CC} or GND. It is not possible to lock the I^2C mode but it is possible to select and lock the SPI mode.

To select and lock the interface into the SPI mode, a number of pulses must be sent down the \overline{CS} (pin 4) line. The following section describes how this is done.

Once the SPI communication protocol has been locked in, it cannot be unlocked while the device is still powered up. Bit D0 of SPI Lock Status register (address = 7Fh) is set to 1 when a successful SPI interface lock has been acomplished. To reset the serial interface the user must power down the part and power up again. A software reset does not reset the serial interface.

SERIAL INTERFACE SELECTION

The \overline{CS} line controls the selection between I²C and SPI. Figure 17 shows the selection process necessary to lock the SPI interface mode.

If the user wants to communicate to the ADT7316/17/18 using the SPI protocol, send three pulses down the \overline{CS} line as shown in figure 17(a) and 17(b). On the third rising edge (marked as C in figure 17) the part selects and locks the SPI interface. The user is now limited to communicating to the device using the SPI protocol.

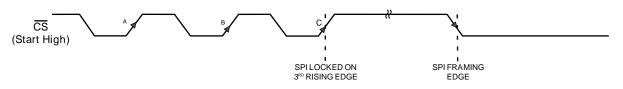


Figure 17(a). Serial Interface - Selecting and Locking SPI Protocol

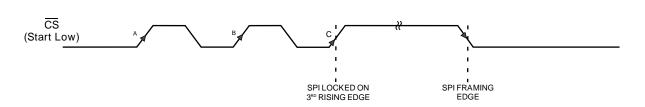


Figure 17(b). Serial Interface - Selecting and Locking SPI Protocol

As per most SPI standards, the $\overline{\text{CS}}$ line must be low during every SPI communication to the ADT7316/17/18 and high all other times. Typical examples of how to connect up the dual interface as I²C or SPI is shown in figures 18(a) and 18(b).

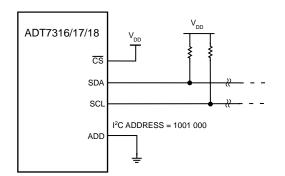


Figure 18(a). Typical I²C Interface Connection

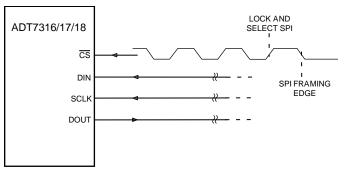


Figure 18(b). Typical SPI Interface Connection

The following sections describe in detail how to use the I^2C and SPI protocols associated with the ADT7316/17/18.

I²C SERIAL INTERFACE

Like all I^2 C-compatible devices, the ADT7316/7317/7318 has an 7-bit serial address. The four MSBs of this address for the ADT7316/7317/7318 are set to 1001. The three LSBs are set by pin 11, ADD. The ADD pin can be configured three ways to give three different address options; low, floating and high. Setting the ADD pin low gives a serial bus address of 1001 000, leaving it floating gives the address 1001 010 and setting it high gives the address 1001 011.

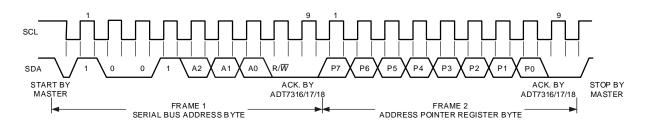


Figure 19. I²C - Writing to the Address Pointer Register to select a register for a subsequent Read operation

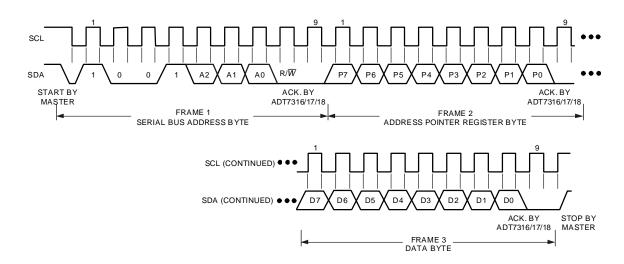


Figure 20. PC - Writing to the Address Pointer Register followed by a single byte of data to the selected register

There is a programmable SMBus timeout. When this is enabled the SMBus will timeout after 25 ms of no activity. To enable it, set Bit 6 of Control Configuration 2 register. The power-up default is with the SMBus timeout disabled.

The ADT7316/17/18 supports SMBus Packet Error Checking (PEC) and it's use is optional. It is triggered by supplying the extra clocks for the PEC byte. The PEC is calculated using CRC-8. The Frame Clock Sequence (FCS) conforms to CRC-8 by the polynomial :

$$C(x) = x^8 + x^2 + x^1 + 1$$

Consult SMBus specification (www.smbus.org) for more information.

The serial bus protocol operates as follows:

1. The master initiates data transfer by establishing a START condition, defined as a high to low transition on the serial data line SDA whilst the serial clock line

SCL remains high. This indicates that an address/data stream will follow. All slave peripherals connected to the serial bus respond to the START condition, and shift in the next 8 bits, consisting of a 7-bit address (MSB first) plus a R/\overline{W} bit, which determines the direction of the data transfer, i.e. whether data will be written to or read from the slave device.

The peripheral whose address corresponds to the transmitted address responds by pulling the data line low during the low period before the ninth clock pulse, known as the Acknowledge Bit. All other devices on the bus now remain idle whilst the selected device waits for data to be read from or written to it. If the R/\overline{W} bit is a 0 then the master will write to the slave device. If the R/\overline{W} bit is a 1 the master will read from the slave device.

2. Data is sent over the serial bus in sequences of 9 clock pulses, 8 bits of data followed by an Acknowledge Bit from the receiver of data. Transitions on the data line must occur during the low period of the clock signal

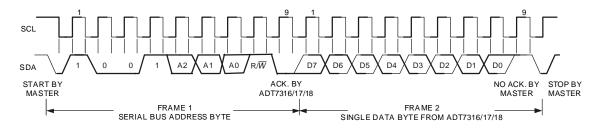


Figure 21. I²C - Reading a single byte of data from a selected register

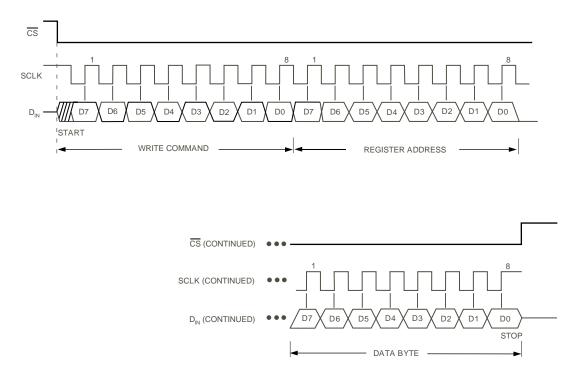


Figure 22. SPI - Writing to the Address Pointer Register followed by a single byte of data to the selected register

and remain stable during the high period, as a low to high transition when the clock is high may be interpreted as a STOP signal.

3. When all data bytes have been read or written, stop conditions are established. In WRITE mode, the master will pull the data line high during the 10th clock pulse to assert a STOP condition. In READ mode, the master device will pull the data line high during the low period before the 9th clock pulse. This is known as No Acknowledge. The master will then take the data line low during the low period before the 10th clock pulse, then high during the 10th clock pulse to assert a STOP condition.

Any number of bytes of data may be transferred over the serial bus in one operation, but it is not possible to mix read and write in one operation, because the type of operation is determined at the beginning and cannot subsequently be changed without starting a new operation.

The I^2C address set up by the ADD pin is not latched by the device until after this address has been sent twice. On the 8th SCL cycle of the second valid communication, the serial bus address is latched in. This is the SCL cycle directly after the device has seen it's own I^2C serial bus address. Any subsequent changes on this pin will have no affect on the I^2C serial bus address.

WRITING TO THE ADT7316/7317/7318

Depending on the register being written to, there are two different writes for the ADT7316/7317/7318. It is not possible to do a block write to this part i.e. no I^2C auto-increment.

Writing to the Address Pointer Register for a subsequent read.

In order to read data from a particular register, the Address Pointer Register must contain the address of that register. If it does not, the correct address must be written to the Address Pointer Register by performing a singlebyte write operation, as shown in Figure 19. The write operation consists of the serial bus address followed by the address pointer byte. No data is written to any of the data registers. A read operation is then performed to read the register.

Writing data to a Register.

All registers are 8-bit registers so only one byte of data can be written to each register. Writing a single byte of data to one of these Read/Write registers consists of the serial bus address, the data register address written to the Address Pointer Register, followed by the data byte written

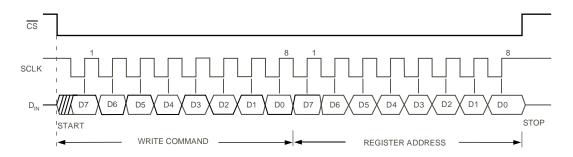


Figure 23. SPI - Writing to the Address Pointer Register to select a register for a subsequent read operation

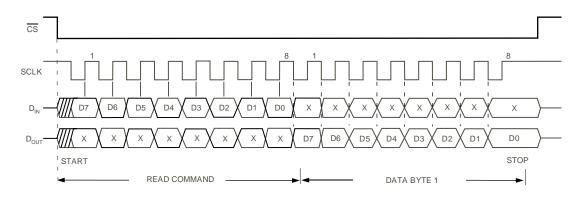


Figure 24. SPI - Reading a single byte of data from a selected register

ADT7316/7317/7318

to the selected data register. This is illustrated in Figure 20. To write to a different register, another START or repeated START is required. If more than one byte of data is sent in one communication operation, the addressed register will be repeatedly loaded until the last data byte has been sent.

READING DATA FROM THE ADT7316/7317/7318

Reading data from the ADT7516/7517/7518 is done in a one byte operation. Reading back the contents of a register is shown in Figure 21. The register address previously having been set up by a single byte write operation to the Address Pointer Register. If you want to read from another register then you will have to write to the Address Pointer Register again to set up the relevant register address. Thus block reads are not possible i.e. no I^2C auto-increment.

SPI SERIAL INTERFACE

The SPI serial interface of the ADT7316/7317/7318 consists of four wires, \overline{CS} , SCLK, DIN and DOUT. The \overline{CS} is used to select the device when more than one device is connected to the serial clock and data lines. The \overline{CS} is also used to distinguish between any two separate serial communications, reference Figure 26 for graphical explanation. The SCLK is used to clock data in and out of the part. The DIN line is used to write to the registers and the DOUT line is used to read data back from the registers.

The part operates in a slave mode and requires an externally applied serial clock to the SCLK input. The serial interface is designed to allow the part to be interfaced to systems that provide a serial clock that is synchronized to the serial data.

There are two types of serial operations, a read and a write. Command words are used to distinguish between a read and a write operation. These command words are

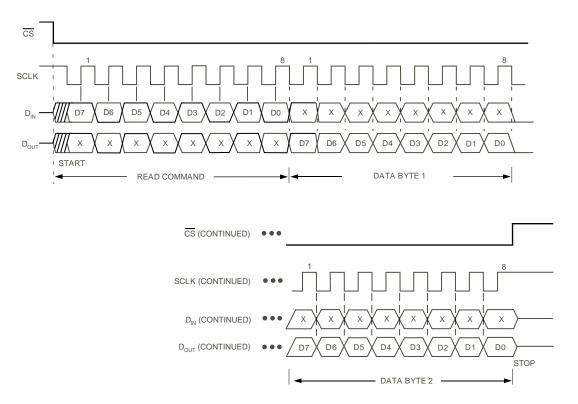


Figure 25. SPI - Reading two bytes of data from two sequential registers

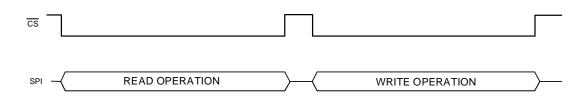


Figure 26. SPI - Correct use of \overline{CS} during SPI communication

given in Table 43. Address auto-increment is possible in SPI mode

Table 43. SPI COMMAND WORDS

WRITE	READ
90h (1001 0000)	91h (1001 0001)

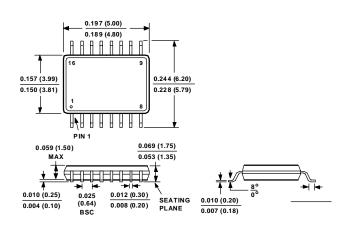
Write Operation

Figures 22 and 23 show the timing diagrams for a write operation to the ADT7316/7317/7318. Data is clocked into the registers on the rising edge of SCLK. When the \overline{CS} line is high the DIN and DOUT lines are in threestate mode. Only when the \overline{CS} goes from a high to a low does the part accept any data on the DIN line. In SPI mode the Address Pointer Register is capable of autoincrement to the next register in the register map without having to load the Address Pointer register each time. In Figure 22 the register address portion of the diagram gives the first register that will be written to. Subsequent data bytes will be written into sequential writable registers. Thus after each data byte has been written into a register, the Address Pointer Register auto increments it's value to the next available register. The Address Pointer Register will auto-increment from 00h to 3Fh and will loop back to start all over again at 00h when it reaches 3Fh.

Read Operation

Figures 24 and 25 show the timing diagrams necessary to accomplish correct read operations. To read back from a register you first have to write to the Address Pointer Register with the address of the register you wish to read from. This operation is shown in Figure 23. Figure 24 shows the procedure for reading back a single byte of data. The read command is first sent to the part during the first 8 clock cycles, during the following 8 clock cycles the data contained in the register selected by the Address Pointer register is outputted onto the DOUT line. Data is outputted onto the DOUT line on the falling edge of SCLK. Figure 25 shows the procedure when reading data from two sequential registers. Multiple data reads are possible in SPI interface mode as the Address Pointer Register is auto-incremental. The Address Pointer Register will auto-increment from 00h to 3Fh and will loop back to start all over again at 00h when it reaches 3Fh.

SMBUS/SPI INT/ $\overline{I}\overline{N}\overline{T}$


The ADT7316/17/18 INT/INT output is an interrupt line that signals an over/under-limit event on any of the measurement channels if the interrupt on that event has not been disabled. The ADT7316/17/18 is a slave only device and uses the SMBus/SPI INT/INT as it's only means to signal other devices that an event has occurred.

The INT/INT pin has an open-drain configuration which allows the outputs of several devices to be wired-AND together when the INT/INT pin is active low. Use C6 of the Control Configuration 1 Register to set the active polarity of the INT/INT output. The power-up default is active low. The INT/INT output can be disabled or enabled by setting C5 of Control Configuration 1 Register to a 1 or 0 respectively. The INT/ $\overline{\rm INT}$ output becomes active when either the Internal Temperature Value, the External Temperature Value or the V_{DD} Value exceed the values in their corresponding T_{HIGH}/V_{HIGH} or T_{LOW}/V_{LOW} Registers. The INT/ $\overline{\rm INT}$ output goes inactive again when a conversion result indicates that all measurement channels are within their trip limits. The two Interrupt Status registers show which event caused the INT/ $\overline{\rm INT}$ pin to go active.

The INT/ $\overline{\rm INT}$ output requires an external pull-up resistor. This can be connected to a voltage different from V_{DD} provided the maximum voltage rating of the $\rm INT/\overline{\rm INT}$ output pin is not exceeded. The value of the pull-up resistor depends on the application, but should be large enough to avoid excessive sink currents at the $\rm INT/\overline{\rm INT}$ output, which can heat the chip and affect the temperature reading.

ADT7316/7317/7318

Outline Dimensions (Dimensions shown in inches and mm) 16-Lead QSOP Package (RQ-16)

